Connect with us

Misc

All the Metals We Mined in One Visualization

Published

on

All the Metals We Mined in One Visualization

All the Metals We Mined in One Visualization

Metals are all around us, from our phones and cars to our homes and office buildings.

While we often overlook the presence of these raw materials, they are an essential part of the modern economy. But obtaining these materials can be a complex process that involves mining, refining, and then converting them into usable forms.

So, how much metal gets mined in a year?

Metals vs Ores

Before digging into the numbers, it’s important that we distinguish between ores and metals.

Ores are naturally occurring rocks that contain metals and metal compounds. Metals are the valuable parts of ores that can be extracted by separating and removing the waste rock. As a result, ore production is typically much higher than the actual metal content of the ore. For example, miners produced 347 million tonnes of bauxite ore in 2019, but the actual aluminum metal content extracted from that was only 62.9 million tonnes.

Here are all the metals and metal ores mined in 2019, according to the British Geological Survey:

Metal/OreQuantity Mined (tonnes)% of Total
Iron Ore3,040,000,00093.57%
Industrial Metals207,478,4866.39%
Technology and Precious Metals1,335,8480.04%
Total3,248,814,334100%

Miners produced roughly three billion tonnes of iron ore in 2019, representing close to 94% of all mined metals. The primary use of all this iron is to make steel. In fact, 98% of iron ore goes into steelmaking, with the rest fulfilling various other applications.

Industrial and technology metals made up the other 6% of all mined metals in 2019. How do they break down?

Industrial Metals

From construction and agriculture to manufacturing and transportation, virtually every industry harnesses the properties of metals in different ways.

Here are the industrial metals we mined in 2019.

MetalQuantity Mined (tonnes)% of Total
Aluminum62,900,00030%
Manganese Ore56,600,00027%
Chromium Ores and Concentrates38,600,00019%
Copper20,700,00010%
Zinc12,300,0006%
Titanium (Titanium Dioxide Content)6,300,0003%
Lead4,700,0002%
Nickel2,702,0001%
Zirconium Minerals (Zircon)1,337,0001%
Magnesium1,059,7361%
Strontium220,0000.11%
Uranium53,4000.03%
Bismuth3,7000.002%
Mercury2,4000.001%
Beryllium2500.0001%
Total207,478,486100%

Percentages may not add up to 100 due to rounding.

It’s no surprise that aluminum is the most-produced industrial metal. The lightweight metal is one of the most commonly used materials in the world, with uses ranging from making foils and beer kegs to buildings and aircraft parts.

Manganese and chromium rank second and third respectively in terms of metal mined, and are important ingredients in steelmaking. Manganese helps convert iron ore into steel, and chromium hardens and toughens steel. Furthermore, manganese is a critical ingredient of lithium-manganese-cobalt-oxide (NMC) batteries for electric vehicles.

Although copper production is around one-third that of aluminum, copper has a key role in making modern life possible. The red metal is found in virtually every wire, motor, and electrical appliance in our homes and offices. It’s also critical for various renewable energy technologies and electric vehicles.

Technology and Precious Metals

Technology is only as good as the materials that make it.

Technology metals can be classified as relatively rare metals commonly used in technology and devices. While miners produce some tech and precious metals in large quantities, others are relatively scarce.

MetalQuantity Mined in 2019 (tonnes)% of Total
Tin305,00023%
Molybdenum275,00021%
Rare Earth Elements220,00016%
Cobalt123,0009%
Lithium97,5007%
Tungsten91,5007%
Vanadium81,0006%
Niobium57,0004%
Cadmium27,5002%
Tantalum27,0002%
Silver26,2612%
Gold3,3500.3%
Indium8510.06%
Platinum Group Metals4570.03%
Gallium3800.03%
Rhenium490.004%
Total1,335,848100.00%

Percentages may not add up to 100 due to rounding.

Tin was the most-mined tech metal in 2019, and according to the International Tin Association, nearly half of it went into soldering.

It’s also interesting to see the prevalence of battery and energy metals. Lithium, cobalt, vanadium, and molybdenum are all critical for various energy technologies, including lithium-ion batteries, wind farms, and energy storage technologies. Additionally, miners also extracted 220,000 tonnes of rare earth elements, of which 60% came from China.

Given their rarity, it’s not surprising that gold, silver, and platinum group metals (PGMs) were the least-mined materials in this category. Collectively, these metals represent just 2.3% of the tech and precious metals mined in 2019.

A Material World

Although humans mine and use massive quantities of metals every year, it’s important to put these figures into perspective.

According to Circle Economy, the world consumes 100.6 billion tonnes of materials annually. Of this total, 3.2 billion tonnes of metals produced in 2019 would account for just 3% of our overall material consumption. In fact, the world’s annual production of cement alone is around 4.1 billion tonnes, dwarfing total metal production.

The world’s appetite for materials is growing with its population. As resource-intensive megatrends such as urbanization and electrification pick up the pace, our material pie will only get larger.

Click for Comments

Misc

Charted: The End-of-Life Recycling Rates of Select Metals

End-of-life recycling rates measure the percentage of a material that is recovered at the end of its useful life, rather than being disposed of or incinerated.

Published

on

A chart ranking the end-of-life recycling rates (EOL-RR) of commonly used metals in the economy, per 2021 data from the International Energy Agency.

Charted: The End-of-Life Recycling Rates of Select Metals

This was originally posted on our Voronoi app. Download the app for free on Apple or Android and discover incredible data-driven charts from a variety of trusted sources.

We visualize the end-of-life recycling rates (EOL-RR) of commonly used metals in the economy. Data is sourced from the International Energy Agency, last updated in 2021.

ℹ️ EOL-RR is the percentage of a material or product that is recycled or recovered at the end of its useful life, rather than being disposed of in landfills or incinerated.

Tracking recycling rates helps manage resources better and make smarter policies, guiding efforts to cut down on waste.

Ranked: The End of Life Recycling Rates of Select Metals

Gold has an 86% recycling rate according to the latest available data. Per the Boston Consulting Group, one-third of total gold supply was met through recycling between 1995–2014.

MetalEnd-of-life recycling
rate (2021)
🔍 Used In
Gold86%💍 Jewelry / Electronics
Platinum/Palladium60%🔬 Optical fibers / Dental fillings
Nickel60%🔋 Batteries / Turbine blades
Silver50%💍 Jewelry / Mirrors
Copper46%🔌 Electrical wiring / Industrial equipment
Aluminum42%✈️ Aeroplane parts / Cans
Chromium34%🍽️ Stainless steel / Leather tanning
Zinc33%🔗 Galvanizing metal / Making rubber
Cobalt32%🔋 Batteries / Turbine engines
Lithium0.5%🔋 Batteries / Pacemakers
REEs0.2%📱 Mobile phones / Hard drives

Note: Figures are rounded.

Several factors can influence metal recycling rates. According to this International Resource Panel report, metals that are used in large quantities (steel) or have a high value (gold) tend to have higher recycling rates.

However, for materials used in small quantities in complex products (rare earth elements in electronics), recycling becomes far more challenging.

Finally, a metal’s EOL-RR is strongly influenced by the least efficient link in the recycling chain, which is typically how it’s initially collected.

Learn More on the Voronoi App

If you enjoyed this post, check out Critical Materials: Where China, the EU, and the U.S. Overlap which shows how critical materials are classified within different jurisdictions.

Continue Reading

Misc

Companies with the Most Fossil Fuel and Cement CO2 Emissions

Half of the world’s total fossil fuel and cement carbon dioxide emissions in 2023 came from just 36 companies.

Published

on

Half of the world’s carbon dioxide emissions in 2023 came from just 36 companies. Here, we chart the world's biggest polluters.

Companies with the Most Fossil Fuel and Cement CO2 Emissions

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Key Takeaways

  • Half of the world’s fossil fuel and cement carbon dioxide emissions in 2023 came from just 36 entities, according to a report by the Carbon Majors Project
  • If Saudi Aramco were a country, it would be the fourth-largest polluter in the world, after China, the U.S., and India.
  • Five publicly traded oil companies—ExxonMobil, Chevron, Shell, TotalEnergies, and BP—together accounted for 5% of global carbon dioxide emissions from fossil fuels.

Chinese Companies Dominate the List

This graphic is based on Carbon Majors, a database of historical production data from 180 of the world’s largest oil, gas, coal, and cement producers representing 169 active and 11 inactive entities.

In 2023, the top 20 highest carbon-producing entities were responsible for 17.5 gigatonnes of carbon dioxide equivalent (GtCO₂e) in emissions, accounting for 40.8% of global fossil fuel and cement CO₂ emissions. The list is largely dominated by state-owned companies, with 16 of the top 20 being state-controlled. Notably, eight Chinese entities contributed to 17.3% of global fossil fuel and cement CO₂ emissions in 2023.

EntityTotal emissions (MtCO2e)Global CO2 emissions (%)
1Saudi Aramco4.4%
2Coal India3.7%
3CHN Energy3.7%
4Jinneng Group2.9%
5Cement industry of China2.8%
6National Iranian Oil Company2.8%
7Gazprom2.3%
8Rosneft1.9%
9Shandong Energy1.7%
10China National Coal Group1.7%
11Abu Dhabi National Oil Company1.6%
12CNPC1.6%
13Shaanxi Coal and Chemical Industry Group1.6%
14Iraq National Oil Company1.3%
15Shanxi Coking Coal Group1.3%
16ExxonMobil1.3%
17Sonatrach1.2%
18Chevron1.1%
19Kuwait Petroleum Corp.1.0%
20Petrobras1.0%
21Shell0.9%
22Pemex0.9%
23TotalEnergies0.8%
24QatarEnergy0.8%
25Lukoil0.8%
26BP0.8%
27Glencore0.7%
28China Huaneng Group0.7%
29Luan Chemical Group0.7%
30Equinor0.7%
31Peabody Energy0.7%
32Nigerian National Petroleum Corp.0.6%
33CNOOC0.6%
34ConocoPhillips0.6%
35Eni0.6%
36Petronas0.5%

Coal continued to be the largest source of emissions in 2023, representing 41.1% of emissions in the database and continuing a steady upward trend since 2016. Coal emissions grew by 1.9% (258 megatonnes of carbon dioxide equivalent – MtCO₂e) from 2022, while cement saw the largest relative increase at 6.5% (82 MtCO₂e), driven by expanding production.

In contrast, natural gas emissions fell by 3.7% (164 MtCO₂e), and oil emissions remained stable with only a slight increase of 0.3% (73 MtCO₂e).

Learn More on the Voronoi App

To learn more about this topic, check out this graphic that shows greenhouse gas emissions by sector in 2023, according to data was compiled by the United Nations. The power sector remains the largest emissions contributor.

Continue Reading

Subscribe

Popular