Connect with us

Electrification

Visualizing Peru’s Silver Mining Strength

Published

on

The following content is sponsored by Silver X.

Peru's Silver Mining Strength Infographic

Visualizing Peru’s Silver Mining Strength

Peru’s silver mining industry is critical as the world progresses towards a clean energy transition. Silver’s use in EVs, solar energy, and mobile technologies will require ready supplies to meet demand.

Peru will be centre stage as the world’s second-largest producer of the precious metal.

This graphic sponsored by Silver X showcases Peru’s silver mining strength on the global scale, putting in perspective the country’s prolific production.

Global Silver Production by Country

Mexico, Peru, and China dominate global silver production, with these countries producing more than double the silver of any other country outside of the top three.

In terms of regional production, Central and South America provide the backbone for the world’s silver industry. With five nations in the top 10 producers, these regions delivered ~50% of the world’s 2020 silver production.

Country2020 Silver Production (in million ounces)Share of Global Silver Production
Mexico178.122.7%
Peru109.714.0%
China108.613.8%
Chile47.46.0%
Australia43.85.6%
Russia42.55.4%
Poland39.45.0%
United States31.74.0%
Bolivia29.93.8%
Argentina22.92.9%
World Total784.4100%

Along with being the top silver mining regions in the world, Central and South America silver production expects to have the strongest rebound in 2021.

While global silver production could increase by 8.2%, Central and South America’s production could rise by 12.1%.

Peru can feed this growth, with the country’s exploration investment forecast for this year expected to reach up to $300 million with over 60 projects currently in various stages of development.

The South American Powerhouse: Peru’s Silver Mining Strength

Despite its current silver production, there remains more to mine and explore. In fact, Peru holds the majority of the world’s silver reserves with 18.2%, making it the global focal point for silver exploration and future production.

CountrySilver Reserves (in tons)Share of World Silver
Peru91,00018.2%
China41,0008.2%
Mexico37,0007.4%
Chile26,0005.2%
Australia25,0005.0%
Other countries280,00056%
World total500,000100%

While 2020 and 2021 saw slowdowns in mineral production, Peru’s metallic mining subsector increased by 5.1% in August 2021 compared to the same month last year. The country’s National Institute of Statistics and Informatics also highlighted a double-digit rise in silver production of 22.7% compared to August of last year.

Satiating the World’s Silver Demand

As silver demand is forecasted to increase by 15% just in 2021, silver supply constraints are a clear roadblock for clean energy technologies and electric vehicle production. With Peru’s annual silver production forecasted to grow by more than 27% by 2024, the country is looking to solve the world’s growing silver supply crunch.

The nation’s strong credit ratings and well-established mining sector offers investors a unique opportunity to tap into the growth of Peru and its silver industry, while powering renewable energy and electric vehicle production.

As a Peru-based mineral development and exploration company, Silver X Mining is working to produce and uncover the silver deposits that will provide the world with the metal it needs for cleaner technologies.

Click for Comments

Electrification

Visualizing the World’s Largest Copper Producers

Many new technologies critical to the energy transition rely on copper. Here are the world’s largest copper producers.

Published

on

Visualizing the World’s Largest Copper Producers

Man has relied on copper since prehistoric times. It is a major industrial metal with many applications due to its high ductility, malleability, and electrical conductivity.

Many new technologies critical to fighting climate change, like solar panels and wind turbines, rely on the red metal.

But where does the copper we use come from? Using the U.S. Geological Survey’s data, the above infographic lists the world’s largest copper producing countries in 2021.

The Countries Producing the World’s Copper

Many everyday products depend on minerals, including mobile phones, laptops, homes, and automobiles. Incredibly, every American requires 12 pounds of copper each year to maintain their standard of living.

North, South, and Central America dominate copper production, as these regions collectively host 15 of the 20 largest copper mines.

Chile is the top copper producer in the world, with 27% of global copper production. In addition, the country is home to the two largest mines in the world, Escondida and Collahuasi.

Chile is followed by another South American country, Peru, responsible for 10% of global production.

RankCountry2021E Copper Production (Million tonnes)Share
#1🇨🇱 Chile5.627%
#2🇵🇪 Peru2.210%
#3🇨🇳 China1.88%
#4🇨🇩 DRC 1.88%
#5🇺🇸 United States1.26%
#6🇦🇺 Australia0.94%
#7🇷🇺 Russia0.84%
#8🇿🇲 Zambia0.84%
#9🇮🇩 Indonesia0.84%
#10🇲🇽 Mexico0.73%
#11🇨🇦 Canada0.63%
#12🇰🇿 Kazakhstan0.52%
#13🇵🇱 Poland0.42%
🌍 Other countries2.813%
🌐 World total21.0100%

The Democratic Republic of Congo (DRC) and China share third place, with 8% of global production each. Along with being a top producer, China also consumes 54% of the world’s refined copper.

Copper’s Role in the Green Economy

Technologies critical to the energy transition, such as EVs, batteries, solar panels, and wind turbines require much more copper than conventional fossil fuel based counterparts.

For example, copper usage in EVs is up to four times more than in conventional cars. According to the Copper Alliance, renewable energy systems can require up to 12x more copper compared to traditional energy systems.

Technology2020 Installed Capacity (megawatts)Copper Content (2020, tonnes)2050p Installed Capacity (megawatts)Copper Content (2050p, tonnes)
Solar PV126,735 MW633,675372,000 MW1,860,000
Onshore Wind105,015 MW451,565202,000 MW868,600
Offshore Wind6,013 MW57,72545,000 MW432,000

With these technologies’ rapid and large-scale deployment, copper demand from the energy transition is expected to increase by nearly 600% by 2030.

As the transition to renewable energy and electrification speeds up, so will the pressure for more copper mines to come online.

Continue Reading

Electrification

Visualizing the World’s Largest Hydroelectric Dams

Hydroelectric dams generate 40% of the world’s renewable energy, the largest of any type. View this infographic to learn more.

Published

on

Visualizing the World’s Largest Hydroelectric Dams

Did you know that hydroelectricity is the world’s biggest source of renewable energy? According to recent figures from the International Renewable Energy Agency (IRENA), it represents 40% of total capacity, ahead of solar (28%) and wind (27%).

This type of energy is generated by hydroelectric power stations, which are essentially large dams that use the water flow to spin a turbine. They can also serve secondary functions such as flow monitoring and flood control.

To help you learn more about hydropower, we’ve visualized the five largest hydroelectric dams in the world, ranked by their maximum output.

Overview of the Data

The following table lists key information about the five dams shown in this graphic, as of 2021. Installed capacity is the maximum amount of power that a plant can generate under full load.

CountryDamRiverInstalled Capacity
(gigawatts)
Dimensions
(meters)
🇨🇳 ChinaThree Gorges DamYangtze River22.5181 x 2,335
🇧🇷 Brazil / 🇵🇾 ParaguayItaipu DamParana River14.0196 x 7,919
🇨🇳 ChinaXiluodu DamJinsha River13.9286 x 700
🇧🇷 BrazilBelo Monte DamXingu River11.290 X 3,545
🇻🇪 VenezuelaGuri DamCaroni River10.2162 x 7,426

At the top of the list is China’s Three Gorges Dam, which opened in 2003. It has an installed capacity of 22.5 gigawatts (GW), which is close to double the second-place Itaipu Dam.

In terms of annual output, the Itaipu Dam actually produces about the same amount of electricity. This is because the Parana River has a low seasonal variance, meaning the flow rate changes very little throughout the year. On the other hand, the Yangtze River has a significant drop in flow for several months of the year.

For a point of comparison, here is the installed capacity of the world’s three largest solar power plants, also as of 2021:

  • Bhadla Solar Park, India: 2.2 GW
  • Hainan Solar Park, China: 2.2 GW
  • Pavagada Solar Park, India: 2.1 GW

Compared to our largest dams, solar plants have a much lower installed capacity. However, in terms of cost (cents per kilowatt-hour), the two are actually quite even.

Closer Look: Three Gorges Dam

The Three Gorges Dam is an engineering marvel, costing over $32 billion to construct. To wrap your head around its massive scale, consider the following facts:

  • The Three Gorges Reservoir (which feeds the dam) contains 39 trillion kg of water (42 billion tons)
  • In terms of area, the reservoir spans 400 square miles (1,045 square km)
  • The mass of this reservoir is large enough to slow the Earth’s rotation by 0.06 microseconds

Of course, any man-made structure this large is bound to have a profound impact on the environment. In a 2010 study, it was found that the dam has triggered over 3,000 earthquakes and landslides since 2003.

The Consequences of Hydroelectric Dams

While hydropower can be cost-effective, there are some legitimate concerns about its long-term sustainability.

For starters, hydroelectric dams require large upstream reservoirs to ensure a consistent supply of water. Flooding new areas of land can disrupt wildlife, degrade water quality, and even cause natural disasters like earthquakes.

Dams can also disrupt the natural flow of rivers. Other studies have found that millions of people living downstream from large dams suffer from food insecurity and flooding.

Whereas the benefits have generally been delivered to urban centers or industrial-scale agricultural developments, river-dependent populations located downstream of dams have experienced a difficult upheaval of their livelihoods.
– Richter, B.D. et al. (2010)

Perhaps the greatest risk to hydropower is climate change itself. For example, due to the rising frequency of droughts, hydroelectric dams in places like California are becoming significantly less economical.

Continue Reading

Subscribe

Popular