Connect with us

Energy Shift

The Raw Material Needs of Energy Technologies

Published

on

demand from energy technologies

The Raw Materials in Energy Technologies

Behind every energy technology are the raw materials that power it, support it, or help build it.

From the lithium in batteries to the copper cabling in offshore wind farms, every energy technology harnesses the properties of one or the other mineral. And the world is shifting towards clean energy technologies, which are more mineral-intensive than their fossil-fuel counterparts.

The above infographic uses data from the World Bank’s Climate Action report and charts the 2050 demand for 15 minerals from energy technologies, as a percentage of 2020 production.

Material Demand from Energy Technologies

Energy sources make use of various minerals that offer different properties and functionalities.

For instance, geothermal power plants use steel alloys with large quantities of titanium to withstand high heat and pressure. Similarly, solar panels use silver for its high conductivity, and hydropower plants use steel alloys with chromium, which hardens steel and makes it corrosion-resistant.

The demand for these energy technologies and minerals will grow alongside our energy needs. Here are some of the minerals that are expected to see increasing demand from energy technologies through 2050, relative to current production levels:

Mineral2020 Production (thousand tonnes)2050 Annual Projected Demand (thousand tonnes)2050 Demand as a % of 2020 Production
Lithium82415506%
Cobalt140644460%
Graphite1,1004,590417%
Indium0.91.73192%
Vanadium86138161%
Nickel2,5002,26891%
Silver251560%
Lead4,40078118%
Molybdenum3003311%
Copper20,0001,3787%
Aluminum65,2005,5839%
Manganese18,5006944%
Chromium40,0003660.92%
Iron1,500,0007,5840.51%
Titanium8,2003.440.04%

Lithium, cobalt, and graphite—the key ingredients of EV batteries—will see the largest increases in demand, each requiring more than a 400% increase relative to 2020 production. These figures can look even more substantial once we bear in mind that this demand is only from energy technologies, and these minerals have other uses too.

Indium and vanadium may be among the lesser-known minerals in this list, however, they are important. Indium demand is expected to rise to 1,730 tonnes by 2050—largely because of demand from solar energy. Similarly, vanadium may also see a large spike in demand due to the growing need for energy storage technologies.

On the other end of the spectrum, iron and aluminum have the largest demand figures in absolute terms. However, miners already produce large quantities of these minerals, and their demand in 2050 represents less than 10% of current production levels.

The Supply and Demand Equation

Although some metals are available in abundance within the Earth’s crust, their demand and supply don’t always match up.

For example, falling copper ore grades in Chile are raising concerns over copper’s long-term supply and Citigroup projects a 521,000-tonne copper shortage for 2021. In addition, a large portion of lithium, cobalt, and graphite production occurs in a few regions, putting the battery supply chain at risk of disruptions.

While supply may be in uncertain territory, it’s extremely likely that demand will rise. As the world transitions to clean energy, a sustainable supply of these minerals could be key to meeting the raw material needs of energy technologies.

Click for Comments

Energy Shift

Mapped: Renewable Energy and Battery Installations in the U.S. in 2023

This graphic describes new U.S. renewable energy installations by state along with nameplate capacity, planned to come online in 2023.

Published

on

Renewable and Battery Installations in the U.S. in 2023

Renewable energy, in particular solar power, is set to shine in 2023. This year, the U.S. plans to get over 80% of its new energy installations from sources like battery, solar, and wind.

The above map uses data from EIA to highlight planned U.S. renewable energy and battery storage installations by state for 2023.

Renewable Energy and Battery Installations in the U.S. in 2023

Texas and California Leading in Renewable Energy

Nearly every state in the U.S. has plans to produce new clean energy in 2023, but it’s not a surprise to see the two most populous states in the lead of the pack.

Even though the majority of its power comes from natural gas, Texas currently leads the U.S. in planned renewable energy installations. The state also has plans to power nearly 900,000 homes using new wind energy.

California is second, which could be partially attributable to the passing of Title 24, an energy code that makes it compulsory for new buildings to have the equipment necessary to allow the easy installation of solar panels, battery storage, and EV charging.

New solar power in the U.S. isn’t just coming from places like Texas and California. In 2023, Ohio will add 1,917 MW of new nameplate solar capacity, with Nevada and Colorado not far behind.

Top 10 StatesBattery (MW)Solar (MW)Wind (MW)Total (MW)
Texas1,9816,4621,94110,385
California4,5554,2931238,970
Nevada6781,59602,274
Ohio121,91751,934
Colorado2301,1872001,617
New York585095591,125
Wisconsin4939921,034
Florida39780980
Kansas00843843
Illinois0363477840

The state of New York is also looking to become one of the nation’s leading renewable energy providers. The New York State Energy Research & Development Authority (NYSERDA) is making real strides towards this objective with 11% of the nation’s new wind power projects expected to come online in 2023.

According to the data, New Hampshire is the only state in the U.S. that has no new utility-scale renewable energy installations planned for 2023. However, the state does have plans for a massive hydroelectric plant that should come online in 2024.

Decarbonizing Energy

Renewable energy is considered essential to reduce global warming and CO2 emissions.

In line with the efforts by each state to build new renewable installations, the Biden administration has set a goal of achieving a carbon pollution-free power sector by 2035 and a net zero emissions economy by no later than 2050.

The EIA forecasts the share of U.S. electricity generation from renewable sources rising from 22% in 2022 to 23% in 2023 and to 26% in 2024.

Continue Reading

Electrification

Where are Clean Energy Technologies Manufactured?

As the market for low-emission solutions expands, China dominates the production of clean energy technologies and their components.

Published

on

Visualizing Where Clean Energy Technologies Are Manufactured

When looking at where clean energy technologies and their components are made, one thing is very clear: China dominates the industry.

The country, along with the rest of the Asia Pacific region, accounts for approximately 75% of global manufacturing capacity across seven clean energy technologies.

Based on the IEA’s 2023 Energy Technology Perspectives report, the visualization above breaks down global manufacturing capacity by region for mass-manufactured clean energy technologies, including onshore and offshore wind, solar photovoltaic (PV) systems, electric vehicles (EVs), fuel cell trucks, heat pumps, and electrolyzers.

The State of Global Manufacturing Capacity

Manufacturing capacity refers to the maximum amount of goods or products a facility can produce within a specific period. It is determined by several factors, including:

  • The size of the manufacturing facility
  • The number of machines or production lines available
  • The skill level of the workforce
  • The availability of raw materials

According to the IEA, the global manufacturing capacity for clean energy technologies may periodically exceed short-term production needs. Currently this is true especially for EV batteries, fuel cell trucks, and electrolyzers. For example, while only 900 fuel cell trucks were sold globally in 2021, the aggregate self-reported capacity by manufacturers was 14,000 trucks.

With that said, there still needs to be a significant increase in manufacturing capacity in the coming decades if demand aligns with the IEA’s 2050 net-zero emissions scenario. Such developments require investments in new equipment and technology, developing the clean energy workforce, access to raw and refined materials, and optimizing production processes to improve efficiency.

What Gives China the Advantage?

Of the above clean energy technologies and their components, China averages 65% of global manufacturing capacity. For certain components, like solar PV wafers, this percentage is as high as 96%.

Here’s a breakdown of China’s manufacturing capacity per clean energy technology.

Technology China’s share of global manufacturing capacity, 2021
Wind (Offshore)70%
Wind (Onshore) 59%
Solar PV Systems85%
Electric Vehicles71%
Fuel Cell Trucks 47%
Heat Pumps39%
Electrolyzers41%

So, what gives China this advantage in the clean energy technology sector? According to the IEA report, the answer lies in a combination of factors:

The mixture of these factors has allowed China to capture a significant share of the global market for clean technologies while driving down the cost of clean energy worldwide.

As the market for low-emission solutions expands, China’s dominance in the sector will likely continue in the coming years and have notable implications for the global energy and emission landscape.

Continue Reading

Subscribe

Popular