Connect with us

Electrification

Mapped: Solar Power by Country in 2021

Published

on

Solar Power by Country

Mapped: Solar Power by Country in 2021

The world is adopting renewable energy at an unprecedented pace, and solar power is leading the way.

Despite a 4.5% fall in global energy demand in 2020, renewable energy technologies showed promising progress. While the growth in renewables was strong across the board, solar power led from the front with 127 gigawatts installed in 2020, its largest-ever annual capacity expansion.

The above infographic uses data from the International Renewable Energy Agency (IRENA) to map solar power capacity by country in 2021. This includes both solar photovoltaic (PV) and concentrated solar power capacity.

The Solar Power Leaderboard

From the Americas to Oceania, countries in virtually every continent (except Antarctica) added more solar to their mix last year. Hereโ€™s a snapshot of solar power capacity by country at the beginning of 2021:

CountryInstalled capacity, megawattsWatts* per capita% of world total
China ๐Ÿ‡จ๐Ÿ‡ณ 254,35514735.6%
U.S. ๐Ÿ‡บ๐Ÿ‡ธ 75,57223110.6%
Japan ๐Ÿ‡ฏ๐Ÿ‡ต 67,0004989.4%
Germany ๐Ÿ‡ฉ๐Ÿ‡ช 53,7835937.5%
India ๐Ÿ‡ฎ๐Ÿ‡ณ 39,211325.5%
Italy ๐Ÿ‡ฎ๐Ÿ‡น 21,6003453.0%
Australia ๐Ÿ‡ฆ๐Ÿ‡บ 17,6276372.5%
Vietnam ๐Ÿ‡ป๐Ÿ‡ณ 16,504602.3%
South Korea ๐Ÿ‡ฐ๐Ÿ‡ท 14,5752172.0%
Spain ๐Ÿ‡ช๐Ÿ‡ธ 14,0891862.0%
United Kingdom ๐Ÿ‡ฌ๐Ÿ‡ง 13,5632001.9%
France ๐Ÿ‡ซ๐Ÿ‡ท 11,7331481.6%
Netherlands ๐Ÿ‡ณ๐Ÿ‡ฑ 10,2133961.4%
Brazil ๐Ÿ‡ง๐Ÿ‡ท 7,881221.1%
Turkey ๐Ÿ‡น๐Ÿ‡ท 6,668730.9%
South Africa ๐Ÿ‡ฟ๐Ÿ‡ฆ 5,990440.8%
Taiwan ๐Ÿ‡น๐Ÿ‡ผ 5,8171720.8%
Belgium ๐Ÿ‡ง๐Ÿ‡ช 5,6463940.8%
Mexico ๐Ÿ‡ฒ๐Ÿ‡ฝ 5,644350.8%
Ukraine ๐Ÿ‡บ๐Ÿ‡ฆ 5,3601140.8%
Poland ๐Ÿ‡ต๐Ÿ‡ฑ 3,936340.6%
Canada ๐Ÿ‡จ๐Ÿ‡ฆ 3,325880.5%
Greece ๐Ÿ‡ฌ๐Ÿ‡ท 3,2472580.5%
Chile ๐Ÿ‡จ๐Ÿ‡ฑ 3,2051420.4%
Switzerland ๐Ÿ‡จ๐Ÿ‡ญ 3,1182950.4%
Thailand ๐Ÿ‡น๐Ÿ‡ญ 2,988430.4%
United Arab Emirates ๐Ÿ‡ฆ๐Ÿ‡ช 2,5391850.4%
Austria ๐Ÿ‡ฆ๐Ÿ‡น 2,2201780.3%
Czech Republic ๐Ÿ‡จ๐Ÿ‡ฟ 2,0731940.3%
Hungary ๐Ÿ‡ญ๐Ÿ‡บ 1,9531310.3%
Egypt ๐Ÿ‡ช๐Ÿ‡ฌ 1,694170.2%
Malaysia ๐Ÿ‡ฒ๐Ÿ‡พ 1,493280.2%
Israel ๐Ÿ‡ฎ๐Ÿ‡ฑ 1,4391340.2%
Russia ๐Ÿ‡ท๐Ÿ‡บ 1,42870.2%
Sweden ๐Ÿ‡ธ๐Ÿ‡ช 1,417630.2%
Romania ๐Ÿ‡ท๐Ÿ‡ด 1,387710.2%
Jordan ๐Ÿ‡ฏ๐Ÿ‡ด 1,3591000.2%
Denmark ๐Ÿ‡ฉ๐Ÿ‡ฐ 1,3001860.2%
Bulgaria ๐Ÿ‡ง๐Ÿ‡ฌ 1,0731520.2%
Philippines ๐Ÿ‡ต๐Ÿ‡ญ 1,04890.1%
Portugal ๐Ÿ‡ต๐Ÿ‡น 1,025810.1%
Argentina ๐Ÿ‡ฆ๐Ÿ‡ท 764170.1%
Pakistan ๐Ÿ‡ต๐Ÿ‡ฐ 73760.1%
Morocco ๐Ÿ‡ฒ๐Ÿ‡ฆ 73460.1%
Slovakia ๐Ÿ‡ธ๐Ÿ‡ฐ 593870.1%
Honduras ๐Ÿ‡ญ๐Ÿ‡ณ 514530.1%
Algeria ๐Ÿ‡ฉ๐Ÿ‡ฟ 448100.1%
El Salvador ๐Ÿ‡ธ๐Ÿ‡ป 429660.1%
Iran ๐Ÿ‡ฎ๐Ÿ‡ท 41450.1%
Saudi Arabia ๐Ÿ‡ธ๐Ÿ‡ฆ 409120.1%
Finland ๐Ÿ‡ซ๐Ÿ‡ฎ 391390.1%
Dominican Republic ๐Ÿ‡ฉ๐Ÿ‡ด 370340.1%
Peru ๐Ÿ‡ต๐Ÿ‡ช 331100.05%
Singapore ๐Ÿ‡ธ๐Ÿ‡ฌ 329450.05%
Bangladesh ๐Ÿ‡ง๐Ÿ‡ฉ 30120.04%
Slovenia ๐Ÿ‡ธ๐Ÿ‡ฎ 2671280.04%
Uruguay ๐Ÿ‡บ๐Ÿ‡พ 256740.04%
Yemen ๐Ÿ‡พ๐Ÿ‡ช 25380.04%
Iraq ๐Ÿ‡ฎ๐Ÿ‡ถ 21650.03%
Cambodia ๐Ÿ‡ฐ๐Ÿ‡ญ 208120.03%
Cyprus ๐Ÿ‡จ๐Ÿ‡พ 2001470.03%
Panama ๐Ÿ‡ต๐Ÿ‡ฆ 198460.03%
Luxembourg ๐Ÿ‡ฑ๐Ÿ‡บ 1952440.03%
Malta ๐Ÿ‡ฒ๐Ÿ‡น 1843120.03%
Indonesia ๐Ÿ‡ฎ๐Ÿ‡ฉ 17210.02%
Cuba ๐Ÿ‡จ๐Ÿ‡บ 163140.02%
Belarus ๐Ÿ‡ง๐Ÿ‡พ 159170.02%
Senegal ๐Ÿ‡ธ๐Ÿ‡ณ 15580.02%
Norway ๐Ÿ‡ณ๐Ÿ‡ด 152170.02%
Lithuania ๐Ÿ‡ฑ๐Ÿ‡น 148370.02%
Namibia ๐Ÿ‡ณ๐Ÿ‡ฆ 145550.02%
New Zealand ๐Ÿ‡ณ๐Ÿ‡ฟ 142290.02%
Estonia ๐Ÿ‡ช๐Ÿ‡ช 130980.02%
Bolivia ๐Ÿ‡ง๐Ÿ‡ด 120100.02%
Oman ๐Ÿ‡ด๐Ÿ‡ฒ 109210.02%
Colombia ๐Ÿ‡จ๐Ÿ‡ด 10720.01%
Kenya ๐Ÿ‡ฐ๐Ÿ‡ช 10620.01%
Guatemala ๐Ÿ‡ฌ๐Ÿ‡น10160.01%
Croatia ๐Ÿ‡ญ๐Ÿ‡ท 85170.01%
World total ๐ŸŒŽ 713,97083100.0%

*1 megawatt = 1,000,000 watts.

China is the undisputed leader in solar installations, with over 35% of global capacity. What’s more, the country is showing no signs of slowing down. It has the worldโ€™s largest wind and solar project in the pipeline, which could add another 400,000MW to its clean energy capacity.

Following China from afar is the U.S., which recently surpassed 100,000MW of solar power capacity after installing another 50,000MW in the first three months of 2021. Annual solar growth in the U.S. has averaged an impressive 42% over the last decade. Policies like the solar investment tax credit, which offers a 26% tax credit on residential and commercial solar systems, have helped propel the industry forward.

Although Australia hosts a fraction of Chinaโ€™s solar capacity, it tops the per capita rankings due to its relatively low population of 26 million people. The Australian continent receives the highest amount of solar radiation of any continent, and over 30% of Australian households now have rooftop solar PV systems.

China: The Solar Champion

In 2020, President Xi Jinping stated that China aims to be carbon neutral by 2060, and the country is taking steps to get there.

China is a leader in the solar industry, and it seems to have cracked the code for the entire solar supply chain. In 2019, Chinese firms produced 66% of the worldโ€™s polysilicon, the initial building block of silicon-based photovoltaic (PV) panels. Furthermore, more than three-quarters of solar cells came from China, along with 72% of the worldโ€™s PV panels.

With that said, itโ€™s no surprise that 5 of the worldโ€™s 10 largest solar parks are in China, and it will likely continue to build more as it transitions to carbon neutrality.

Whatโ€™s Driving the Rush for Solar Power?

The energy transition is a major factor in the rise of renewables, but solarโ€™s growth is partly due to how cheap it has become over time. Solar energy costs have fallen exponentially over the last decade, and itโ€™s now the cheapest source of new energy generation.

Since 2010, the cost of solar power has seen a 85% decrease, down from $0.28 to $0.04 per kWh. According to MIT researchers, economies of scale have been the single-largest factor in continuing the cost decline for the last decade. In other words, as the world installed and made more solar panels, production became cheaper and more efficient.

This year, solar costs are rising due to supply chain issues, but the rise is likely to be temporary as bottlenecks resolve.

Click for Comments

Electrification

How EV Adoption Will Impact Oil Consumption (2015-2025P)

How much oil is saved by adding electric vehicles into the mix? We look at data from 2015 to 2025P for different types of EVs.

Published

on

The EV Impact on Oil Consumption

As the world moves towards the electrification of the transportation sector, demand for oil will be replaced by demand for electricity.

To highlight the EV impact on oil consumption, the above infographic shows how much oil has been and will be saved every day between 2015 and 2025 by various types of electric vehicles, according to BloombergNEF.

How Much Oil Do Electric Vehicles Save?

A standard combustion engine passenger vehicle in the U.S. uses aboutย 10 barrels of oil equivalentย (BOE) per year. A motorcycle uses 1, a Class 8 truck about 244, and a bus uses more than 276 BOEs per year.

When these vehicles become electrified, the oil their combustion engine counterparts would have used is no longer needed, displacing oil demand with electricity.

Since 2015, two and three-wheeled vehicles, such as mopeds, scooters, and motorcycles, have accounted for most of the oil saved from EVs on a global scale. With a wide adoption in Asia specifically, these vehicles displaced the demand for almost 675,000 barrels of oil per day in 2015. By 2021, this number had quickly grown to 1 million barrels per day.

Letโ€™s take a look at the daily displacement of oil demand by EV segment.

Number of barrels saved per day, 2015Number of barrels saved per day, 2025P
Electric Passenger Vehicles8,600 886,700
Electric Commercial Vehicles0145,000
Electric Buses 43,100333,800
Electric Two & Three-Wheelers674,3001,100,000
Total Oil Barrels Per Day726,0002,465,500

Today, while work is being done in the commercial vehicle segment, very few large trucks on the road are electricโ€”however, this is expected to change by 2025.

Meanwile,ย electric passenger vehicles have shown the biggest growth in adoption since 2015.

In 2022, the electric car market experienced exponential growth, with sales exceeding 10 million cars. The market is expected to continue its strong growth throughout 2023 and beyond, eventually coming to save a predicted 886,700 barrels of oil per day in 2025.

From Gas to Electric

While the world shifts from fossil fuels to electricity, BloombergNEF predicts that the decline in oil demand does not necessarily equate to a drop in oil prices.

In the event that investments in new supply capacity decrease more rapidly than demand, oil prices could still remain unstable and high.

The shift toward electrification, however, will likely have other implications.

While most of us associate electric vehicles with lower emissions, itโ€™s good to consider that they are only as sustainable as the electricity used to charge them. The shift toward electrification, then, presents an incredible opportunity to meet the growing demand for electricity with clean energy sources, such as wind, solar and nuclear power.

The shift away from fossil fuels in road transport will also require expanded infrastructure. EV charging stations, expanded transmission capacity, and battery storage will likely all be key to supporting the wide-scale transition from gas to electricity.

Continue Reading

Electrification

Graphite: An Essential Material in the Battery Supply Chain

Graphite represents almost 50% of the materials needed for batteries by weight, no matter the chemistry.

Published

on

Graphite: An Essential Material in the Battery Supply Chain

The demand for lithium-ion (Li-ion) batteries has skyrocketed in recent years due to the increasing popularity of electric vehicles (EVs) and renewable energy storage systems.

What many people don’t realize, however, is that the key component of these batteries is not just lithium, but also graphite.

Graphite represents almost 50% of the materials needed for batteries by weight, regardless of the chemistry. In Li-ion batteries specifically, graphite makes up the anode, which is the negative electrode responsible for storing and releasing electrons during the charging and discharging process.

To explore just how essential graphite is in the battery supply chain, this infographic sponsored by Northern Graphite dives into how the anode of a Li-ion battery is made.

What is Graphite?

Graphite is a naturally occurring form of carbon that is used in a wide range of industrial applications, including in synthetic diamonds, EV Li-ion batteries, pencils, lubricants, and semiconductor substrates.

It is stable, high-performing, and reusable. While it comes in many different grades and forms, battery-grade graphite falls into one of two classes: natural or synthetic.

Natural graphite is produced by mining naturally occurring mineral deposits. This method produces only one to two kilograms of CO2 emissions per kilogram of graphite.

Synthetic graphite, on the other hand, is produced by the treatment of petroleum coke and coal tar, producing nearly 5 kg of CO2 per kilogram of graphite along with other harmful emissions such as sulfur oxide and nitrogen oxide.

A Closer Look: How Graphite Turns into a Li-ion Battery Anode

The battery anode production process is composed of four overarching steps. These are:

  1. Mining
  2. Shaping
  3. Purifying
  4. Coating

Each of these stages results in various forms of graphite with different end-uses.

For instance, the micronized graphite that results from the shaping process can be used in plastic additives. On the other hand, only coated spherical purified graphite that went through all four of the above stages can be used in EV Li-ion batteries.

The Graphite Supply Chain

Despite its growing use in the energy transition all around the world, around 70% of the worldโ€™s graphite currently comes from China.

With scarce alternatives to be used in batteries, however, achieving supply security in North America is crucial, and it is using more environmentally friendly approaches to graphite processing.

With a lower environmental footprint and lower production costs, natural graphite serves as the anode material for a greener future.

Click here to learn more about how Northern Graphite plans to build the largest Battery Anode Material (BAM) plant in North America.

Continue Reading

Subscribe

Popular