Connect with us

Electrification

How Much Land is Needed to Power the U.S. with Solar?

Published

on

How much land would it take to power the U.S. with solar?

How Much Land is Needed to Power the U.S. with Solar?

The Biden administration has set a goal of reaching 100% clean electricity throughout the U.S. by 2035, and solar power is a key for this American energy transition.

In the last decade alone, solar has experienced an average annual growth rate of 42% in the U.S. thanks to federal tax credits, declining costs, and increasing demand. It is projected that more than one in seven American homes will have a solar power system by 2030.

To put this trend into perspective, this graphic uses data from the United States Department of Energy to see how much land would be needed to power the entire country with solar panels.

Solar Panels Across the Ocean State

The U.S. has 102.9 gigawatts of total solar installed capacity which is equivalent to 965 square miles, roughly the size of the country’s smallest state, Rhode Island. This current solar capacity generates enough electricity to power 18.6 million American homes, which is nearly 13% of the nation’s households.

According to a report from the National Renewable Energy Laboratory, roughly 22,000 square miles of solar panel-filled land (about the size of Lake Michigan) would be required to power the entire country, including all 141 million households and businesses, based on 13-14% efficiency for solar modules.

Many solar panels, however, reach 20% efficiency, which could reduce the necessary area to just about 10,000 square miles, equivalent to the size of Lake Erie.

Solar Installations Spreading Across the States

Today, solar represents only 3% of the total U.S. electrical generation.

While California has traditionally dominated the market, other states like Florida and Texas are expanding rapidly, boosted by the residential market.

Large companies with clean energy goals such as Walmart, Apple, Target and Amazon have also helped push solar adoption to near-record levels in 2021.

How much land is needed to power the U.S. with solar?

Despite having a high installation cost, the technology tends to bring savings in the long term. An average-sized residential system has dropped from a price of $40,000 in 2010 to roughly $20,000 in 2020. Along with this, solar panels can save between $10,000-$30,000 over a 30-year lifetime.

Between land and rooftops, the United States has more than enough space to build all the solar panels necessary to power the country. Until then, the future of clean electricity will also depend on hydro, nuclear, geothermal, and wind energy.

Click for Comments

Electrification

Visualizing China’s Dominance in Battery Manufacturing (2022-2027P)

This infographic breaks down battery manufacturing capacity by country in 2022 and 2027.

Published

on

battery manufacturing capacity by country infographic

Visualizing China’s Dominance in Battery Manufacturing

With the world gearing up for the electric vehicle era, battery manufacturing has become a priority for many nations, including the United States.

However, having entered the race for batteries early, China is far and away in the lead.

Using the data and projections behind BloombergNEF’s lithium-ion supply chain rankings, this infographic visualizes battery manufacturing capacity by country in 2022 and 2027p, highlighting the extent of China’s battery dominance.

Battery Manufacturing Capacity by Country in 2022

In 2022, China had more battery production capacity than the rest of the world combined.

RankCountry2022 Battery Cell
Manufacturing Capacity, GWh
% of Total
#1 🇨🇳 China89377%
#2🇵🇱 Poland736%
#3🇺🇸 U.S.706%
#4🇭🇺 Hungary383%
#5🇩🇪 Germany313%
#6🇸🇪 Sweden161%
#7🇰🇷 South Korea151%
#8🇯🇵 Japan121%
#9🇫🇷 France61%
#10🇮🇳 India30.2%
🌍 Other71%
Total1,163100%

With nearly 900 gigawatt-hours of manufacturing capacity or 77% of the global total, China is home to six of the world’s 10 biggest battery makers. Behind China’s battery dominance is its vertical integration across the rest of the EV supply chain, from mining the metals to producing the EVs. It’s also the largest EV market, accounting for 52% of global sales in 2021.

Poland ranks second with less than one-tenth of China’s capacity. In addition, it hosts LG Energy Solution’s Wroclaw gigafactory, the largest of its kind in Europe and one of the largest in the world. Overall, European countries (including non-EU members) made up just 14% of global battery manufacturing capacity in 2022.

Although it lives in China’s shadow when it comes to batteries, the U.S. is also among the world’s lithium-ion powerhouses. As of 2022, it had eight major operational battery factories, concentrated in the Midwest and the South.

China’s Near-Monopoly Continues Through 2027

Global lithium-ion manufacturing capacity is projected to increase eightfold in the next five years. Here are the top 10 countries by projected battery production capacity in 2027:

RankCountry2027P Battery Cell
Manufacturing Capacity, GWh
% of Total
#1🇨🇳 China6,19769%
#2🇺🇸 U.S.90810%
#3🇩🇪 Germany5036%
#4🇭🇺 Hungary1942%
#5🇸🇪 Sweden1352%
#6🇵🇱 Poland1121%
#7🇨🇦 Canada1061%
#8🇪🇸 Spain981%
#9🇫🇷 France891%
#10 🇲🇽 Mexico801%
🌍 Other5236%
Total8,945100%

China’s well-established advantage is set to continue through 2027, with 69% of the world’s battery manufacturing capacity.

Meanwhile, the U.S. is projected to increase its capacity by more than 10-fold in the next five years. EV tax credits in the Inflation Reduction Act are likely to incentivize battery manufacturing by rewarding EVs made with domestic materials. Alongside Ford and General Motors, Asian companies including Toyota, SK Innovation, and LG Energy Solution have all announced investments in U.S. battery manufacturing in recent months.

Europe will host six of the projected top 10 countries for battery production in 2027. Europe’s current and future battery plants come from a mix of domestic and foreign firms, including Germany’s Volkswagen, China’s CATL, and South Korea’s SK Innovation.

Can Countries Cut Ties With China?

Regardless of the growth in North America and Europe, China’s dominance is unmatched.

Battery manufacturing is just one piece of the puzzle, albeit a major one. Most of the parts and metals that make up a battery—like battery-grade lithium, electrolytes, separators, cathodes, and anodes—are primarily made in China.

Therefore, combating China’s dominance will be expensive. According to Bloomberg, the U.S. and Europe will have to invest $87 billion and $102 billion, respectively, to meet domestic battery demand with fully local supply chains by 2030.

Continue Reading

Electrification

Visualizing 25 Years of Lithium Production, by Country

Lithium production has grown exponentially over the last few decades. Which countries produce the most lithium, and how has this mix evolved?

Published

on

lithium production

Lithium Production by Country (1995-2021)

Lithium is often dubbed as “white gold” for electric vehicles.

The lightweight metal plays a key role in the cathodes of all types of lithium-ion batteries that power EVs. Accordingly, the recent rise in EV adoption has sent lithium production to new highs.

The above infographic charts more than 25 years of lithium production by country from 1995 to 2021, based on data from BP’s Statistical Review of World Energy.

The Largest Lithium Producers Over Time

In the 1990s, the U.S. was the largest producer of lithium, in stark contrast to the present.

In fact, the U.S. accounted for over one-third of global lithium production in 1995. From then onwards until 2010, Chile took over as the biggest producer with a production boom in the Salar de Atacama, one of the world’s richest lithium brine deposits.

Global lithium production surpassed 100,000 tonnes for the first time in 2021, quadrupling from 2010. What’s more, roughly 90% of it came from just three countries.

RankCountry2021 Production (tonnes)% of Total
#1Australia 🇦🇺55,41652%
#2Chile 🇨🇱26,00025%
#3China 🇨🇳14,00013%
#4Argentina 🇦🇷5,9676%
#5Brazil 🇧🇷1,5001%
#6Zimbabwe 🇿🇼1,2001%
#7Portugal 🇵🇹9001%
#8United States 🇺🇸9001%
Rest of World 🌍1020.1%
Total105,984100%

Australia alone produces 52% of the world’s lithium. Unlike Chile, where lithium is extracted from brines, Australian lithium comes from hard-rock mines for the mineral spodumene.

China, the third-largest producer, has a strong foothold in the lithium supply chain. Alongside developing domestic mines, Chinese companies have acquired around $5.6 billion worth of lithium assets in countries like Chile, Canada, and Australia over the last decade. It also hosts 60% of the world’s lithium refining capacity for batteries.

Batteries have been one of the primary drivers of the exponential increase in lithium production. But how much lithium do batteries use, and how much goes into other uses?

What is Lithium Used For?

While lithium is best known for its role in rechargeable batteries—and rightly so—it has many other important uses.

Before EVs and lithium-ion batteries transformed the demand for lithium, the metal’s end-uses looked completely different as compared to today.

End-useLithium Consumption 2010 (%)Lithium Consumption 2021 (%)
Batteries23%74%
Ceramics and glass31%14%
Lubricating greases10%3%
Air treatment5%1%
Continuous casting4%2%
Other27%6%
Total100%100%

In 2010, ceramics and glass accounted for the largest share of lithium consumption at 31%. In ceramics and glassware, lithium carbonate increases strength and reduces thermal expansion, which is often essential for modern glass-ceramic cooktops.

Lithium is also used to make lubricant greases for the transport, steel, and aviation industries, along with other lesser-known uses.

The Future of Lithium Production

As the world produces more batteries and EVs, the demand for lithium is projected to reach 1.5 million tonnes of lithium carbonate equivalent (LCE) by 2025 and over 3 million tonnes by 2030.

For context, the world produced 540,000 tonnes of LCE in 2021. Based on the above demand projections, production needs to triple by 2025 and increase nearly six-fold by 2030.

Although supply has been on an exponential growth trajectory, it can take anywhere from six to more than 15 years for new lithium projects to come online. As a result, the lithium market is projected to be in a deficit for the next few years.

Continue Reading

Subscribe

Popular