Technology Metals
Rare Earth Metals Production is No Longer Monopolized by China
Rare Earth Elements: The Technology Metals
In the midst of our daily hustle and bustle, we often don’t notice the raw materials that go into the technologies we rely on.
Rare earth metals, also known as rare earth elements or simply “rare earths”, are one such group of raw materials. From this group of 17 minerals, many are found in a range of technologies—from our smartphones and laptops to electric vehicles and wind turbines.
Rare Earth Metals Production Over the Years
Despite the relative abundance of rare earth deposits, extracting them from the ground is difficult, and preparing them for usage entails significant environmental risks.
The U.S. was the world’s leading producer of rare earth metals from the 1960s to the 1980s. However, China took the helm in the 1990s and has been the dominant producer ever since.
Year | U.S. Production (metric tons) | China’s Production (metric tons) | ROW Production (metric tons) | U.S. % Share | China’s % Share |
---|---|---|---|---|---|
1985 | 13,428 | 8,500 | 17,757 | 34% | 21% |
1990 | 22,713 | 16,480 | 20,917 | 38% | 27% |
1995 | 22,200 | 48,000 | 9,700 | 28% | 60% |
2000 | 5,000 | 73,000 | 5,500 | 6% | 87% |
2005 | 0 | 119,000 | 3,000 | 0% | 98% |
2010 | 0 | 120,000 | 11,000 | 0% | 92% |
2015 | 5,900 | 105,000 | 19,100 | 5% | 81% |
2020 | 38,000 | 140,000 | 62,000 | 16% | 58% |
In 1985, China introduced a policy that partially refunded the taxes paid by domestic producers of rare earths, which lowered costs for Chinese mining companies. This, in addition to lax environmental regulations and cheap labor, made China’s rare earth industry increasingly competitive. In fact, its production increased 464% between 1985 and 1995.
Meanwhile, in California, the Mountain Pass Mine struggled to compete with Chinese producers while facing stringent environmental regulations. Therefore, the U.S. share of production declined from 34% in 1985 to 6% in 2000 before ceasing completely in 2002.
Putting Rare Earths in Different Baskets
In 2010, China slashed its rare earth export quotas by 37%, pushing rare earth prices to all-time highs. This, in turn, fueled an influx of capital into the rare earth mining industry and kickstarted mining in other countries.
Namely, Australia saw a 672% increase in rare earth production over the last decade, and more recently, Myanmar entered the mix—producing 30,000 metric tons of rare earths in 2020. Additionally, the Mountain Pass Mine is undergoing a revival following an investment from MP Materials in 2018. As a result, the U.S. share of production is growing again.
While the mining of rare earth metals is diversifying, 80% of refining still occurs in China. With the demand for rare earths projected to double by 2030, building both mining and refining capacity overseas may prove key in reducing reliance on China.
Technology Metals
Charted: America’s Import Reliance of Critical Minerals
The U.S. is heavily reliant on imports for many critical minerals. How import-dependent is the U.S. for each one, and on which country?

Charting America’s Import Reliance of Key Minerals
The push towards a more sustainable future requires various key minerals to build the infrastructure of the green economy. However, the U.S. is heavily reliant on nonfuel mineral imports causing potential vulnerabilities in the nation’s supply chains.
Specifically, the U.S. is 100% reliant on imports for at least 12 key minerals deemed critical by the government, with China being the primary import source for many of these along with many other critical minerals.
This graphic uses data from the U.S. Geological Survey (USGS) to visualize America’s import dependence for 30 different key nonfuel minerals along with the nation that the U.S. primarily imports each mineral from.
U.S. Import Reliance, by Mineral
While the U.S. mines and processes a significant amount of minerals domestically, in 2022 imports still accounted for more than half of the country’s consumption of 51 nonfuel minerals. The USGS calculates a net import reliance as a percentage of apparent consumption, showing how much of U.S. demand for each mineral is met through imports.
Of the most important minerals deemed by the USGS, the U.S. was 95% or more reliant on imports for 13 different minerals, with China being the primary import source for more than half of these.
Mineral | Net Import Reliance as Percentage of Consumption | Primary Import Source (2018-2021) |
---|---|---|
Arsenic | 100% | 🇨🇳 China |
Fluorspar | 100% | 🇲🇽 Mexico |
Gallium | 100% | 🇨🇳 China |
Graphite (natural) | 100% | 🇨🇳 China |
Indium | 100% | 🇰🇷 Republic of Korea |
Manganese | 100% | 🇬🇦 Gabon |
Niobium | 100% | 🇧🇷 Brazil |
Scandium | 100% | 🇪🇺 Europe |
Tantalum | 100% | 🇨🇳 China |
Yttrium | 100% | 🇨🇳 China |
Bismuth | 96% | 🇨🇳 China |
Rare Earths (compounds and metals) | 95% | 🇨🇳 China |
Titanium (metal) | 95% | 🇯🇵 Japan |
Antimony | 83% | 🇨🇳 China |
Chromium | 83% | 🇿🇦 South Africa |
Tin | 77% | 🇵🇪 Peru |
Cobalt | 76% | 🇳🇴 Norway |
Zinc | 76% | 🇨🇦 Canada |
Aluminum (bauxite) | 75% | 🇯🇲 Jamaica |
Barite | 75% | 🇨🇳 China |
Tellerium | 75% | 🇨🇦 Canada |
Platinum | 66% | 🇿🇦 South Africa |
Nickel | 56% | 🇨🇦 Canada |
Vanadium | 54% | 🇨🇦 Canada |
Germanium | 50% | 🇨🇳 China |
Magnesium | 50% | 🇮🇱 Israel |
Tungsten | 50% | 🇨🇳 China |
Zirconium | 50% | 🇿🇦 South Africa |
Palladium | 26% | 🇷🇺 Russia |
Lithium | 25% | 🇦🇷 Argentina |
These include rare earths (a group of 17 nearly indistinguishable heavy metals with similar properties) which are essential in technology, high-powered magnets, electronics, and industry, along with natural graphite which is found in lithium-ion batteries.
These are all on the U.S. government’s critical mineral list which has a total of 50 minerals, and the U.S. is 50% or more import reliant for 43 of these minerals.
Some other minerals on the official list which the U.S. is 100% reliant on imports for are arsenic, fluorspar, indium, manganese, niobium, and tantalum, which are used in a variety of applications like the production of alloys and semiconductors along with the manufacturing of electronic components like LCD screens and capacitors.
China’s Gallium and Germanium Restrictions
America’s dependence on imports for various minerals has resulted in a new challenge resulting from China’s announced export restrictions on gallium and germanium that took effect August 1st, 2023. The U.S. is 100% import dependent for gallium and 50% import dependent for germanium.
These restrictions are seen as a retaliation against U.S. and EU sanctions on China which have restricted the export of chips and chipmaking equipment.
Both gallium and germanium are used in the production of transistors and semiconductors along with solar panels and cells, and these export restrictions present an additional hurdle for critical U.S. supply chains of various technologies that include LED lights and fiber-optic systems used for high-speed data transmission.
The restrictions also affect the European Union, which imports 71% of its gallium and 45% of its germanium from China. It’s another stark reminder to the world of China’s dominance in the production and processing of many key minerals.
The announcement of these restrictions has only highlighted the importance for the U.S. and other nations to reduce import dependence and diversify supply chains of key minerals and technologies.
Technology Metals
Why Copper Is a Critical Mineral
From the electrical grid to EVs, copper is a key building block for the modern economy.

Why Copper is a Critical Mineral
Copper is critical for everything from the electrical grid to electric vehicles and renewable energy technologies.
But despite copper’s indispensable role in the modern economy, it is not on the U.S. Critical Minerals list.
This infographic from the Copper Development Association shows what makes copper critical, and why it should be an officially designated Critical Mineral.
Copper’s Role in the Economy
Besides clean energy technologies, several industries including construction, infrastructure, and defense use copper for its unique properties.
For example, copper is used in pipes and water service lines due to its resistance to corrosion and durable nature. As the Biden Administration plans to replace all of America’s lead water pipes, copper pipes are the best long-term solution.
Copper’s high electrical conductivity makes it the material of choice for electric wires and cables. Therefore, it is an important part of energy technologies like wind farms, solar panels, lithium-ion batteries, and the grid. The demand for copper from these technologies is projected to grow over the next decade:
Energy Technology | Annual Copper Demand Growth (2021-2035P) | Use of Copper |
---|---|---|
Offshore wind | 23.3% | Undersea cables, generators, transformers |
Battery storage | 21.8% | Transformers, wiring |
Automotive* | 14.0% | Batteries, motors, charging infrastructure |
Solar PV | 11.9% | Wiring, heat exchangers |
Onshore wind | 9.8% | Cabling, transformers, substations |
Electrical transmission | 7.2% | Transformers, cables, circuit breakers |
Electrical distribution | 2.7% | Transformers, cables, circuit breakers |
*excludes internal combustion engine (ICE) vehicles.
Furthermore, policies like the Inflation Reduction Act and Bipartisan Infrastructure Law will bolster copper demand through energy and infrastructure investments.
Given its vital role in numerous technologies, why is copper not on the U.S. Critical Minerals list?
Copper and the Critical Minerals List
The USGS defines a Critical Mineral as having three components, and copper meets each one:
- It is essential to economic and national security.
- It plays a key role in energy technology, defense, consumer electronics, and other applications.
- Its supply chain is vulnerable to disruption.
In addition, copper ore grades are falling globally, from an average of 2% in 1900 to 1% in 2000 and a projected 0.5% in 2030, according to BloombergNEF. As grades continue falling, copper mining could become less economical in certain regions, posing a risk to future supply.
The current USGS list of Critical Minerals, which does not include copper, is based on supply risk scores that use data from 2015 to 2018. According to an analysis by the Copper Development Association using the USGS’ methodology, new data shows that copper meets the USGS’ supply risk score cutoff for inclusion on the Critical Minerals list.
Despite not being on the official list, copper is beyond critical. Its inclusion on the official Critical Minerals list will allow for streamlined regulations and faster development of new supply sources.
The Copper Development Association (CDA) brings the value of copper and its alloys to society, to address the challenges of today and tomorrow. Click here to learn more about why copper should be an official critical mineral.
-
Electrification2 years ago
Ranked: The Top 10 EV Battery Manufacturers
-
Real Assets3 years ago
Visualizing China’s Dominance in Rare Earth Metals
-
Real Assets2 years ago
The World’s Top 10 Gold Mining Companies
-
Electrification1 year ago
The Key Minerals in an EV Battery
-
Misc2 years ago
All the Metals We Mined in One Visualization
-
Misc2 years ago
All the World’s Metals and Minerals in One Visualization
-
Real Assets3 years ago
What is a Commodity Super Cycle?
-
Real Assets3 years ago
How the World’s Top Gold Mining Stocks Performed in 2020