Connect with us

Energy Shift

Visualizing the Rise of the U.S. as Top Crude Oil Producer

Published

on

line chart showing top crude oil producers

Visualizing the Rise of the U.S. as Top Crude Oil Producer

Over the last decade, the United States has established itself as the world’s top producer of crude oil, surpassing Saudi Arabia and Russia.

This infographic illustrates the rise of the U.S. as the biggest oil producer, based on data from the U.S. Energy Information Administration (EIA).

U.S. Takes Lead in 2018

Over the last three decades, the United States, Saudi Arabia, and Russia have alternated as the top crude producers, but always by small margins.

During the 1990s, Saudi Arabia dominated crude production, taking advantage of its extensive oil reserves. The petroleum sector accounts for roughly 42% of the country’s GDP, 87% of its budget revenues, and 90% of export earnings.

However, during the 2000s, Russia surpassed Saudi Arabia in production during some years, following strategic investments in expanding its oil infrastructure. The majority of Russia’s oil goes to OECD Europe (60%), with around 20% going to China.

Crude Oil Production United StatesSaudi ArabiaRussia
199211.93%13.97%12.74%
199311.50%13.68%11.35%
199410.96%13.32%10.50%
199510.60%13.17%9.96%
199610.21%12.87%9.49%
19979.84%12.73%9.29%
19989.39%12.58%9.05%
19999.06%11.99%9.33%
20008.67%12.33%9.64%
20018.65%11.89%10.45%
20028.63%11.49%11.53%
20038.05%12.92%12.10%
20047.46%12.74%12.67%
20057.00%13.21%12.82%
20066.85%13.00%12.90%
20076.84%12.38%13.29%
20086.71%12.44%12.56%
20097.32%11.28%12.98%
20107.37%11.31%13.03%
20117.55%12.81%13.02%
20128.50%13.04%12.94%
20139.76%12.86%13.10%
201411.18%12.60%12.86%
201511.67%12.77%12.66%
201610.92%13.12%13.02%
201711.53%12.68%13.05%
201813.21%12.77%12.96%
201914.90%12.15%13.20%
202014.87%12.37%12.97%
202114.59%12.06%13.10%
202214.73%13.17%12.76%

Over the 2010s, the U.S. witnessed an increase in domestic production, much of it attributable to hydraulic fracturing, or “fracking,” in the shale formations ranging from Texas to North Dakota. It became the world’s largest oil producer in 2018, outproducing Russia and Saudi Arabia.

The U.S. accounted for 14.7% of crude oil production worldwide in 2022, compared to 13.1% for Saudi Arabia and 12.7% for Russia.

Despite leading petroleum production, the U.S. still trails seven countries in remaining proven reserves underground, with 55,251 million barrels.

Venezuela has the biggest reserves with 303,221 million barrels. Saudi Arabia, with 267,192 million barrels, occupies the second spot, while Russia is seventh with 80,000 million barrels.

Subscribe to Visual Capitalist
Click for Comments

Energy Shift

Visualizing All the Nuclear Waste in the World

Despite concerns about nuclear waste, high-level radioactive waste constitutes less than 0.25% of all radioactive waste ever generated.

Published

on

Graphic cubes illustrating the global volume of nuclear waste and its disposal methods.

Visualizing All the Nuclear Waste in the World

Originally posted on the Decarbonization Channel. Subscribe to the free mailing list to be the first to receive decarbonization-related visualizations, with a focus on the U.S. power sector.

Nuclear power is among the safest and cleanest sources of electricity, making it a critical part of the clean energy transition.

However, nuclear waste, an inevitable byproduct, is often misunderstood.

In collaboration with the National Public Utilities Council, this graphic shows the volume of all existing nuclear waste, categorized by its level of hazardousness and disposal requirements, based on data from the International Atomic Energy Agency (IAEA).

Storage and Disposal

Nuclear provides about 10% of global electricity generation.

Nuclear waste, produced as a result of this, can be divided into four different types:

  • Very low-level waste: Waste suitable for near-surface landfills, requiring lower containment and isolation.
  • Low-level waste: Waste needing robust containment for up to a few hundred years, suitable for disposal in engineered near-surface facilities.
  • Intermediate-level waste: Waste that requires a greater degree of containment and isolation than that provided by near-surface disposal.
  • High-level waste: Waste is disposed of in deep, stable geological formations, typically several hundred meters below the surface.

Despite safety concerns, high-level radioactive waste constitutes less than 0.25% of total radioactive waste reported to the IAEA.

Waste ClassDisposed (cubic meters)Stored (cubic meters)Total (cubic meters)
Very low-level waste758,802313,8821,072,684
Low-level waste1,825,558204,8582,030,416
Intermediate level waste671,097201,893872,990
High-level waste3,9605,3239,283

Stored and disposed radioactive waste reported to the IAEA under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Data is from the last reporting year which varies by reporting country, 2019-2023.

The amount of waste produced by the nuclear power industry is small compared to other industrial activities.

While flammable liquids comprise 82% of the hazardous materials shipped annually in the U.S., radioactive waste accounts for only 0.01%.

Continue Reading

Energy Shift

China Dominates the Supply of U.S. Critical Minerals List

China was the world’s leading producer of 30 out of 50 entries on the U.S. critical minerals list, according to the U.S. Geological Survey.

Published

on

China Dominates the Supply of U.S. Critical Minerals List

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Most countries have, for many decades, kept a record of their own critical minerals list.

For example, the U.S., drew up a list of “war minerals” during World War I, containing important minerals which could not be found and produced in abundance domestically. They included: tin, nickel, platinum, nitrates and potash.

Since then, as the economy has grown and innovated, critical mineral lists have expanded considerably. The Energy Act of 2020 defines a critical mineral as:

“A non-fuel mineral or mineral material essential to the economic or national security of the U.S., whose supply chains are vulnerable to disruption.” — Energy Act, 2020.

Currently there are 50 entries on this list and the U.S. Geological Survey (USGS) estimates that China is the leading producer for 30 of them. From USGS data, we visualize China’s share of U.S. imports for 10 critical minerals.

What Key Critical Minerals Does the U.S. Import From China?

The U.S. is 100% import-reliant for its supply of yttrium, with China responsible for 94% of U.S. imports of the metal from 2018 to 2021.

A soft silvery metal, yttrium is used as an additive for alloys, making microwave filters for radars, and as a catalyst in ethylene polymerization—a key process in making certain kinds of plastic.

China is a major supplier of the following listed critical minerals to the U.S.

Critical MineralChina's Share
of U.S. Imports
U.S. Imports (Tonnes)Uses
Yttrium94%1,000Catalyst, Microwave filters
Rare Earths74%11,940Smartphones, Cameras
Bismuth65%2,800Metallurgy
Antimony63%25,590Batteries
Arsenic57%5,400Semiconductors
Germanium54%29,000Chips, Fiber optics
Gallium53%12,000Chips, Fiber optics
Barite38%2,300Hydrocarbon production
Graphite (natural)33%82,000Batteries, Lubricants
Tungsten29%14,000Metallurgy

Note: China’s share of U.S. critical minerals imports is based on average imports from 2018 to 2021.

Meanwhile, the U.S. also imports nearly three-quarters of its rare earth compounds and metals demand from China. Rare earth elements—so called since they are not found in easily-mined, concentrated clusters—are a collection of 15 elements on the periodic table, known as the lanthanide series.

ℹ️ Yttrium and scandium exhibit similar rare-earth properties, and are found in the same ore bodies. They are often grouped together with the lanthanide series.

Rare earths are used in smartphones, cameras, hard disks, and LEDs but also, crucially, in the clean energy and defense industries.

Does China’s Dominance of U.S. Critical Minerals Supply Matter?

The USGS estimates that China could potentially disrupt the global rare earth oxide supply by cutting off 40–50% production, impacting suppliers of advanced components used in U.S. defense systems.

A version of this sort of trade warfare is already playing out. Earlier this year, China implemented export controls on germanium and gallium. The U.S. relies on China for around 54% of its demand for both minerals, used for producing chips, solar panels, and fiber optics.

China’s controls were seen as a retaliation against the U.S. which has restricted the supply of chips, chip design software, and lithography machines to Chinese companies.

Continue Reading

Subscribe

Popular