Connect with us

Energy Shift

The Raw Material Needs of Energy Technologies

Published

on

demand from energy technologies

The Raw Materials in Energy Technologies

Behind every energy technology are the raw materials that power it, support it, or help build it.

From the lithium in batteries to the copper cabling in offshore wind farms, every energy technology harnesses the properties of one or the other mineral. And the world is shifting towards clean energy technologies, which are more mineral-intensive than their fossil-fuel counterparts.

The above infographic uses data from the World Bank’s Climate Action report and charts the 2050 demand for 15 minerals from energy technologies, as a percentage of 2020 production.

Material Demand from Energy Technologies

Energy sources make use of various minerals that offer different properties and functionalities.

For instance, geothermal power plants use steel alloys with large quantities of titanium to withstand high heat and pressure. Similarly, solar panels use silver for its high conductivity, and hydropower plants use steel alloys with chromium, which hardens steel and makes it corrosion-resistant.

The demand for these energy technologies and minerals will grow alongside our energy needs. Here are some of the minerals that are expected to see increasing demand from energy technologies through 2050, relative to current production levels:

Mineral2020 Production (thousand tonnes)2050 Annual Projected Demand (thousand tonnes)2050 Demand as a % of 2020 Production
Lithium82415506%
Cobalt140644460%
Graphite1,1004,590417%
Indium0.91.73192%
Vanadium86138161%
Nickel2,5002,26891%
Silver251560%
Lead4,40078118%
Molybdenum3003311%
Copper20,0001,3787%
Aluminum65,2005,5839%
Manganese18,5006944%
Chromium40,0003660.92%
Iron1,500,0007,5840.51%
Titanium8,2003.440.04%

Lithium, cobalt, and graphite—the key ingredients of EV batteries—will see the largest increases in demand, each requiring more than a 400% increase relative to 2020 production. These figures can look even more substantial once we bear in mind that this demand is only from energy technologies, and these minerals have other uses too.

Indium and vanadium may be among the lesser-known minerals in this list, however, they are important. Indium demand is expected to rise to 1,730 tonnes by 2050—largely because of demand from solar energy. Similarly, vanadium may also see a large spike in demand due to the growing need for energy storage technologies.

On the other end of the spectrum, iron and aluminum have the largest demand figures in absolute terms. However, miners already produce large quantities of these minerals, and their demand in 2050 represents less than 10% of current production levels.

The Supply and Demand Equation

Although some metals are available in abundance within the Earth’s crust, their demand and supply don’t always match up.

For example, falling copper ore grades in Chile are raising concerns over copper’s long-term supply and Citigroup projects a 521,000-tonne copper shortage for 2021. In addition, a large portion of lithium, cobalt, and graphite production occurs in a few regions, putting the battery supply chain at risk of disruptions.

While supply may be in uncertain territory, it’s extremely likely that demand will rise. As the world transitions to clean energy, a sustainable supply of these minerals could be key to meeting the raw material needs of energy technologies.

Click for Comments

Energy Shift

Mapped: Nuclear Reactors in the U.S.

America has 92 reactors in operation, providing about 20% of the country’s electricity.

Published

on

Nuclear Reactors in the U.S.

Mapped: Nuclear Reactors in the U.S.

The United States is the world’s largest producer of nuclear power, representing more than 30% of the world’s nuclear power generation.

America has 92 reactors in operation, providing about 20% of the country’s electricity.

The above infographic uses data from the International Atomic Energy Agency to showcase every single nuclear reactor in America.

Nuclear Development

Nuclear power in the U.S. dates back to the 1950s.

George Westinghouse produced the first commercial pressurized water reactor in 1957 in Shippingport, Pennsylvania. The technology is used in approximately half of the 450 nuclear power reactors worldwide.

Today, over 30 different power companies across 30 states operate nuclear facilities in the U.S., and most nuclear power reactors are located east of the Mississippi River.

Illinois has more reactors than any state, with 11 reactors and the largest total nuclear electricity generation capacity at about 11,582 megawatts (MW). Meanwhile, the largest reactor is at the Grand Gulf Nuclear Station in Port Gibson, Mississippi, with a capacity of about 1,500 MW.

Most American reactors in operation were built between 1967 and 1990. Until 2013 there had been no new constructions started since 1977, according to the World Nuclear Association.

Usually, U.S. power reactors receive a license to operate for 60 years. The oldest operating reactor, Nine Mile Point Unit 1 in New York, began commercial operation in December 1969. The newest reactor to enter service, Watts Bar Unit 2, came online in 2016.

The Future of Nuclear Power in the U.S.

U.S. nuclear power’s capacity peaked in 2012 at about 102,000 MW, with 104 operating nuclear reactors operating.

US nuclear generation and capacity

Since nuclear plants generate nearly 20% of U.S. electricity and about half of the country’s carbon‐free electricity, the recent push from the Biden administration to reduce fossil fuels and increase clean energy will require significant new nuclear capacity.

Today, there are two new reactors under construction (Vogtle 3 and 4) in Georgia, expected to come online before 2023.

Furthermore, some of the Inflation Reduction Act provisions include incentives for the nuclear industry. Starting in 2024, for example, utilities will be able to get a credit of $15 per megawatt-hour for electricity produced by existing nuclear plants. Nuclear infrastructure projects could also be eligible for up to $250 billion worth of loans to update, repurpose, and revitalize energy infrastructure that has stopped working.

Continue Reading

Energy Shift

What is the Cost of Europe’s Energy Crisis?

As European gas prices soar, countries are introducing policies to try and curb the energy crisis.

Published

on

What is the Cost of Europe’s Energy Crisis?

Europe is scrambling to cut its reliance on Russian fossil fuels.

As European gas prices soar eight times their 10-year average, countries are introducing policies to curb the impact of rising prices on households and businesses. These include everything from the cost of living subsidies to wholesale price regulation. Overall, funding for such initiatives has reached $276 billion as of August.

With the continent thrown into uncertainty, the above chart shows allocated funding by country in response to the energy crisis.

The Energy Crisis, In Numbers

Using data from Bruegel, the below table reflects spending on national policies, regulation, and subsidies in response to the energy crisis for select European countries between September 2021 and July 2022. All figures in U.S. dollars.

CountryAllocated Funding Percentage of GDPHousehold Energy Spending,
Average Percentage
🇩🇪 Germany$60.2B1.7%9.9%
🇮🇹 Italy$49.5B2.8%10.3%
🇫🇷 France$44.7B1.8%8.5%
🇬🇧 U.K.$37.9B1.4%11.3%
🇪🇸 Spain$27.3B2.3%8.9%
🇦🇹 Austria$9.1B2.3%8.9%
🇵🇱 Poland$7.6B1.3%12.9%
🇬🇷 Greece$6.8B3.7%9.9%
🇳🇱 Netherlands$6.2B0.7%8.6%
🇨🇿 Czech Republic$5.9B2.5%16.1%
🇧🇪 Belgium$4.1B0.8%8.2%
🇷🇴 Romania$3.8B1.6%12.5%
🇱🇹 Lithuania$2.0B3.6%10.0%
🇸🇪 Sweden$1.9B0.4%9.2%
🇫🇮 Finland$1.2B0.5%6.1%
🇸🇰 Slovakia$1.0B1.0%14.0%
🇮🇪 Ireland$1.0B0.2%9.2%
🇧🇬 Bulgaria$0.8B1.2%11.2%
🇱🇺 Luxembourg$0.8B1.1%n/a
🇭🇷 Croatia$0.6B1.1%14.3%
🇱🇻 Lativia$0.5B1.4%11.6%
🇩🇰 Denmark$0.5B0.1%8.2%
🇸🇮 Slovenia$0.3B0.5%10.4%
🇲🇹 Malta$0.2B1.4%n/a
🇪🇪 Estonia$0.2B0.8%10.9%
🇨🇾 Cyprus$0.1B0.7%n/a

Source: Bruegel, IMF. Euro and pound sterling exchange rates to U.S. dollar as of August 25, 2022.

Germany is spending over $60 billion to combat rising energy prices. Key measures include a $300 one-off energy allowance for workers, in addition to $147 million in funding for low-income families. Still, energy costs are forecasted to increase by an additional $500 this year for households.

In Italy, workers and pensioners will receive a $200 cost of living bonus. Additional measures, such as tax credits for industries with high energy usage were introduced, including a $800 million fund for the automotive sector.

With energy bills predicted to increase three-fold over the winter, households in the U.K. will receive a $477 subsidy in the winter to help cover electricity costs.

Meanwhile, many Eastern European countries—whose households spend a higher percentage of their income on energy costs— are spending more on the energy crisis as a percentage of GDP. Greece is spending the highest, at 3.7% of GDP.

Utility Bailouts

Energy crisis spending is also extending to massive utility bailouts.

Uniper, a German utility firm, received $15 billion in support, with the government acquiring a 30% stake in the company. It is one of the largest bailouts in the country’s history. Since the initial bailout, Uniper has requested an additional $4 billion in funding.

Not only that, Wien Energie, Austria’s largest energy company, received a €2 billion line of credit as electricity prices have skyrocketed.

Deepening Crisis

Is this the tip of the iceberg? To offset the impact of high gas prices, European ministers are discussing even more tools throughout September in response to a threatening energy crisis.

To reign in the impact of high gas prices on the price of power, European leaders are considering a price ceiling on Russian gas imports and temporary price caps on gas used for generating electricity, among others.

Price caps on renewables and nuclear were also suggested.

Given the depth of the situation, the chief executive of Shell said that the energy crisis in Europe would extend beyond this winter, if not for several years.

Continue Reading

Subscribe

Latest News

The latest news from our sponsors:

Popular