Connect with us

Energy Shift

The Advantages of Nuclear Energy in the Clean Energy Shift

Published

on

| 1,329 views

The following content is sponsored by Standard Uranium.

advantages of nuclear energy

Nuclear in the Energy Shift

The world’s population is projected to increase to 9.7 billion by 2050 and as the population grows, so will our energy needs.

According to the International Atomic Energy Agency (IAEA), global energy consumption will rise 40% by 2050, and electricity consumption will more than double. Meeting the rising demand for energy while protecting the environment will require clean energy sources that are powerful and reliable—and nuclear fits the bill.

The above infographic from Standard Uranium highlights the advantages of nuclear energy and its role in the clean energy transition.

The Advantages of Nuclear Energy

From cleanliness and reliability to safety and efficiency, seven factors make nuclear power essential to a clean future.

1. Carbon-free Energy

Nuclear power plants generate energy through fission, without any fossil fuel combustion.

As a result, nuclear power has one of the lowest lifecycle carbon dioxide emissions among other energy technologies. In fact, the use of nuclear power has reduced over 60 billion tonnes of carbon dioxide emissions since 1970.

2. Low Land Footprint

Due to the high energy density of uranium, nuclear power plants can produce large amounts of electricity without taking up much space.

A 1,000 megawatt nuclear facility requires just 1.3 square miles of land. For context, solar and wind farms with equal generating capacity can occupy up to 75 times and 360 times more space, respectively.

3. Reliability

Of all the advantages of nuclear energy, reliability is one of the most important.

Nuclear facilities can generate electricity round the clock, contrary to solar and wind farms that depend on the weather. In 2020, U.S. nuclear power plants were running at maximum capacity 92.5% of the time, surpassing all other energy sources.

4. Resource Efficiency

All sources of energy use raw materials that help build them or support them, besides the fuels.

These can range from metals such as copper and rare earths to materials like concrete and glass. Nuclear power plants have the lowest structural material requirements of all low-carbon energy sources. They’re not only powerful but also efficient in their material consumption.

5. Long-term Affordability

The high capital costs of nuclear facilities are often cited as a potential issue. However, this can change over time.

In fact, nuclear reactors with 20-year lifetime extensions are the cheapest sources of electricity in the United States. Furthermore, the average U.S. nuclear reactor is 39 years old, and 88 of the 96 reactors in the country are approved for 20-year extensions.

6. Safety

Although conventional beliefs might suggest otherwise, nuclear is actually one of the safest sources of energy.

Energy sourceDeaths per 10 TWhType
Coal246Fossil fuel
Oil184Fossil fuel
Biomass46Renewable
Natural Gas28Fossil fuel
Nuclear0.7Non-renewable
Wind0.4Renewable
Hydro0.2Renewable
Solar0.2Renewable

Even including disasters and accidents, nuclear energy accounts for one of the lowest number of deaths per terawatt-hour of electricity.

7. Economic Contribution

Apart from the above advantages of nuclear energy, the U.S. nuclear industry also plays a significant role in the economy.

  • The nuclear industry directly employs 100,000 people, and creates thousands of indirect jobs.
  • A typical nuclear power plant generates $40 million in annual labor income.
  • The nuclear industry adds $60 billion to U.S. GDP annually.

Nuclear is not only clean, safe, and reliable but it also has positive ramifications on the economy.

Nuclear Power for the Future

Transitioning to a cleaner future while increasing energy production may be difficult without new nuclear sources—largely because other renewable energy sources aren’t as powerful, reliable, or efficient.

As the energy shift ramps up, nuclear power will be an essential part of our clean energy mix.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.
Continue Reading
Comments

Electrification

Are Copper Prices in a Supercycle? A 120-Year Perspective

To put current copper price trends into perspective, this graphic shows the metal’s previous rallies over the last 120 years.

Published

on

Are Copper Prices in a Supercycle? A 120-Year Perspective

There are multiple factors that could fuel the price of copper to record highs, including the global recovery from the COVID-19 pandemic, the U.S. trillion-dollar stimulus package, and the ongoing energy transition.

As a result of this, some global banks are predicting a supercycle for the metal, i.e., a sustained spell of abnormally strong demand growth that producers struggle to match, sparking a rally in prices that can last decades.

To put the current trend into perspective, the above graphic uses data from the U.S. Federal Reserve and consultancy Roskill to picture copper’s previous rallies over the last 120 years.

Historic EventsPrice In USD/Tonne
1914 - World War I$11,648
1930 - Great Depression$4,690
1942 - World War II$3,514
1973 - Oil Crisis$9,196
1997 - Asian Crisis $2,420
2008 - Financial Crisis$11,000
2020 - COVID-19$4,700

The Rise of a Super Power: U.S. Supercycle

Industrialization and urbanization in the United States sparked the first supercycle of the 20th century. Machines replaced hand labor as the main means of manufacturing and people moved to cities in record numbers. Immigration and natural growth caused the U.S. population to rise from 40 million in 1870 to 100 million in 1916.

“What’s right about America is that although we have a mess of problems, we have great capacity – intellect and resources – to do some thing about them.” – Henry Ford II

The value of goods produced in the U.S. increased almost tenfold between 1870 and 1916. The cycle was succeeded by the Great Depression, with a sharp decline in world consumption that brought the copper price to the lowest since 1894 ($4,690 per tonne).

Pax Americana: The Post-War Copper Supercycle

During WWII, the U.S. government considered copper a critical metal to the military. In order to conserve copper supply, the use of copper in building construction was prohibited, specific products with copper were limited to 60% of its previous war usage, and the War Production Board allocated supply to specific manufacturers.

At the center of global copper markets, the London Metals Exchange fixed the price of copper at £56/tonne ($3,514 per tonne, adjusted to 2021 inflation) during the war and the government issued permits to control purchases. The official price would rise after the war due to increased demand from reconstruction and the rise of the automobile, but price controls were not lifted until 1953.

The United States, Soviet Union, Western European, and East Asian countries experienced unusual growth after World War II. The reconstruction of Europe and Japan powered the commodities market and despite the scale of material damage, industrial equipment and plants survived the war remarkably intact.

“I was very lucky, I was part of the post-war period when everything had to be redone.” – Pierre Cardin

The outbreak of the Korean War in 1950 further strengthened demand as countries commenced strategic stockpiling programs. In January 1951, the US government imposed a ceiling price of 24.6¢/lb on domestic copper which remained in place until the end of 1952. Price controls held U.S. domestic prices lower than world prices, creating shortages.

According to assets managing firm Winton, U.S. prices remained lower after the release of these controls, as producers sought to prevent the substitution of copper wiring with cheaper materials such as aluminum. This two-tier market – producer prices for U.S. consumers and LME prices for everyone else – was in place until 1970.

The Pax Americana spanned from the end of the Second World War in 1945 to the early 1970s, when the collapse of the Bretton Woods monetary system and the 1973 oil crisis caused high unemployment and high inflation in most of the Western world. Prices jumped to $9,196 per tonne in 1973.

The Four Tigers and The Rise of China: Asian Supercycles

The massive growth of East Asia nations drove the next two supercycles of the century: (1983-1994) and the 2000s commodities boom (2002-2014).

Specifically, Japan played a central role in the third supercycle of the century. The country achieved record economic growth, averaging 10% a year until the seventies. Its economy grew from one less productive than Italy to the third-largest in the world, behind only the United States and the Soviet Union. Growth was especially strong in heavy industry and in advanced technology.

The most recent cycle started in 2002 after China joined the World Trade Organization (WTO) and started to modernize its economy. The country entered a phase of roaring economic growth, fueled by a rollout of infrastructure and cities on an unprecedented scale. Copper price reached $9,000 per tonne in May 2006, pressured by strong Chinese demand.

Are Copper Prices in a Supercycle?

Previous copper rallies reveal a pattern of broad-based growth, industrialization, and new technologies can help drive the demand and prices. Is the global economy entering such a phase?

As world economies emerge from the COVID-19 pandemic and decarbonization is top-of-mind in many countries, copper is set to play a key role as an electrical conductor. Electric and hybrid cars use more copper than regular gasoline vehicles – 165lbs, 110lbs and 55lbs respectively. Renewables also demand more copper: A single wind farm can contain between 4 million and 15 million pounds of metal.

The copper price hit a record high in May 2021 ($10,476 a tonne) and trading house Trafigura Group, Goldman Sachs, and Bank of America expect the metal to extend its recent gains. Whether it will be enough for a new supercycle is yet to be seen.

Hindsight is 20/20 but the future looks electric.

Continue Reading

Electrification

Visualizing China’s Evolving Energy Mix

This infographic takes a look at what China’s energy transition plans are to make its energy mix carbon neutral by 2060.

Published

on

Visualizing China’s Energy Transition in 5 Charts

Visualizing China’s Energy Transition in 5 Charts

In September 2020, China’s President Xi Jinping announced the steps his nation would take to reach carbon neutrality by 2060 via videolink before the United Nations Assembly in New York.

This infographic takes a look at what this ambitious plan for China’s energy would look like and what efforts are underway towards this goal.

China’s Ambitious Plan

A carbon-neutral China requires changing the entire economy over the next 40 years, a change the IEA compares to the ambition of the reforms that industrialized the country’s economy in the first place.

China is the world’s largest consumer of electricity, well ahead of the second place consumer, the United States. Currently, 80% of China’s energy comes from fossil fuels, but this plan envisions only 14% coming from coal, oil, and natural gas in 2060.

Energy Source20252060% Change
Coal52%3%-94%
Oil18%8%-56%
Natural Gas10%3%-70%
Wind4%24%+500%
Nuclear3%19%+533%
Biomass2%5%+150%
Solar3%23%+667%
Hydro8%15%+88%

Source: Tsinghua University Institute of Energy, Environment and Economy; U.S. EIA

According to the Carbon Brief, China’s 14th five-year plan appears to enshrine Xi’s goal. This plan outlines a general and non specific list of projects for a new energy system. It includes the construction of eight large-scale clean energy centers, coastal nuclear power, electricity transmission routes, power system flexibility, oil-and-gas transportation, and storage capacity.

Progress Towards Renewables?

While the goal seems far off in the future, China is on a trajectory towards reducing the carbon emissions of its electricity grid with declining coal usage, increased nuclear, and increased solar power capacity.

According to ChinaPower, coal fueled the rise of China with the country using 144 million tonnes of oil equivalent “Mtoe” in 1965, peaking at 1,969 Mtoe in 2013. However, its share as part of the country’s total energy mix has been declining since the 1990s from ~77% to just under ~60%.

Another trend in China’s energy transition will be the greater consumption of energy as electricity. As China urbanized, its cities expanded creating greater demand for electricity in homes, businesses, and everyday life. This trend is set to continue and approach 40% of total energy consumed by 2030 up from ~5% in 1990.

Under the new plan, by 2060, China is set to have 42% of its energy coming from solar and nuclear while in 2025 it is only expected to be 6%. China has been adding nuclear and solar capacity and expects to add the equivalent of 20 new reactors by 2025 and enough solar power for 33 million homes (110GW).

Changing the energy mix away from fossil fuels, while ushering in a new economic model is no small task.

Up to the Task?

China is the world’s factory and has relatively young industrial infrastructure with fleets of coal plants, steel mills, and cement factories with plenty of life left.

However, China also is the biggest investor in low-carbon energy sources, has access to massive technological talent, and holds a strong central government to guide the transition.

The direction China takes will have the greatest impact on the health of the planet and provide guidance for other countries looking to change their energy mixes, for better or for worse.

The world is watching…even if it’s by videolink.

Continue Reading

Subscribe

Receive updates when new visuals go live:

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Latest News

The latest news from our sponsors:

Popular