Connect with us

Energy Shift

The Advantages of Nuclear Energy in the Clean Energy Shift



The following content is sponsored by Standard Uranium.

Nuclear in the Energy Shift

The world’s population is projected to increase to 9.7 billion by 2050 and as the population grows, so will our energy needs.

According to the International Atomic Energy Agency (IAEA), global energy consumption will rise 40% by 2050, and electricity consumption will more than double. Meeting the rising demand for energy while protecting the environment will require clean energy sources that are powerful and reliable—and nuclear fits the bill.

The above infographic from Standard Uranium highlights the advantages of nuclear energy and its role in the clean energy transition.

The Advantages of Nuclear Energy

From cleanliness and reliability to safety and efficiency, seven factors make nuclear power essential to a clean future.

1. Carbon-free Energy

Nuclear power plants generate energy through fission, without any fossil fuel combustion.

As a result, nuclear power has one of the lowest lifecycle carbon dioxide emissions among other energy technologies. In fact, the use of nuclear power has reduced over 60 billion tonnes of carbon dioxide emissions since 1970.

2. Low Land Footprint

Due to the high energy density of uranium, nuclear power plants can produce large amounts of electricity without taking up much space.

A 1,000 megawatt nuclear facility requires just 1.3 square miles of land. For context, solar and wind farms with equal generating capacity can occupy up to 75 times and 360 times more space, respectively.

3. Reliability

Of all the advantages of nuclear energy, reliability is one of the most important.

Nuclear facilities can generate electricity round the clock, contrary to solar and wind farms that depend on the weather. In 2020, U.S. nuclear power plants were running at maximum capacity 92.5% of the time, surpassing all other energy sources.

4. Resource Efficiency

All sources of energy use raw materials that help build them or support them, besides the fuels.

These can range from metals such as copper and rare earths to materials like concrete and glass. Nuclear power plants have the lowest structural material requirements of all low-carbon energy sources. They’re not only powerful but also efficient in their material consumption.

5. Long-term Affordability

The high capital costs of nuclear facilities are often cited as a potential issue. However, this can change over time.

In fact, nuclear reactors with 20-year lifetime extensions are the cheapest sources of electricity in the United States. Furthermore, the average U.S. nuclear reactor is 39 years old, and 88 of the 96 reactors in the country are approved for 20-year extensions.

6. Safety

Although conventional beliefs might suggest otherwise, nuclear is actually one of the safest sources of energy.

Energy sourceDeaths per 10 TWhType
Coal246Fossil fuel
Oil184Fossil fuel
Natural Gas28Fossil fuel

Even including disasters and accidents, nuclear energy accounts for one of the lowest number of deaths per terawatt-hour of electricity.

7. Economic Contribution

Apart from the above advantages of nuclear energy, the U.S. nuclear industry also plays a significant role in the economy.

  • The nuclear industry directly employs 100,000 people, and creates thousands of indirect jobs.
  • A typical nuclear power plant generates $40 million in annual labor income.
  • The nuclear industry adds $60 billion to U.S. GDP annually.

Nuclear is not only clean, safe, and reliable but it also has positive ramifications on the economy.

Nuclear Power for the Future

Transitioning to a cleaner future while increasing energy production may be difficult without new nuclear sources—largely because other renewable energy sources aren’t as powerful, reliable, or efficient.

As the energy shift ramps up, nuclear power will be an essential part of our clean energy mix.

Click for Comments

Energy Shift

Visualizing the Rise of the U.S. as Top Crude Oil Producer

Over the last decade, the U.S. has surpassed Saudi Arabia and Russia as the world’s top producer of crude oil.



Line chart showing how the U.S. has surpassed Saudi Arabia and Russia as the world's top producer of crude oil.

Visualizing the Rise of the U.S. as Top Crude Oil Producer

Over the last decade, the United States has established itself as the world’s top producer of crude oil, surpassing Saudi Arabia and Russia.

This infographic illustrates the rise of the U.S. as the biggest oil producer, based on data from the U.S. Energy Information Administration (EIA).

U.S. Takes Lead in 2018

Over the last three decades, the United States, Saudi Arabia, and Russia have alternated as the top crude producers, but always by small margins.

During the 1990s, Saudi Arabia dominated crude production, taking advantage of its extensive oil reserves. The petroleum sector accounts for roughly 42% of the country’s GDP, 87% of its budget revenues, and 90% of export earnings.

However, during the 2000s, Russia surpassed Saudi Arabia in production during some years, following strategic investments in expanding its oil infrastructure. The majority of Russia’s oil goes to OECD Europe (60%), with around 20% going to China.

Crude Oil Production United StatesSaudi ArabiaRussia

Over the 2010s, the U.S. witnessed an increase in domestic production, much of it attributable to hydraulic fracturing, or “fracking,” in the shale formations ranging from Texas to North Dakota. It became the world’s largest oil producer in 2018, outproducing Russia and Saudi Arabia.

The U.S. accounted for 14.7% of crude oil production worldwide in 2022, compared to 13.1% for Saudi Arabia and 12.7% for Russia.

Despite leading petroleum production, the U.S. still trails seven countries in remaining proven reserves underground, with 55,251 million barrels.

Venezuela has the biggest reserves with 303,221 million barrels. Saudi Arabia, with 267,192 million barrels, occupies the second spot, while Russia is seventh with 80,000 million barrels.

Continue Reading

Energy Shift

Visualizing All the Nuclear Waste in the World

Despite concerns about nuclear waste, high-level radioactive waste constitutes less than 0.25% of all radioactive waste ever generated.



Graphic cubes illustrating the global volume of nuclear waste and its disposal methods.

Visualizing All the Nuclear Waste in the World

Originally posted on the Decarbonization Channel. Subscribe to the free mailing list to be the first to receive decarbonization-related visualizations, with a focus on the U.S. power sector.

Nuclear power is among the safest and cleanest sources of electricity, making it a critical part of the clean energy transition.

However, nuclear waste, an inevitable byproduct, is often misunderstood.

In collaboration with the National Public Utilities Council, this graphic shows the volume of all existing nuclear waste, categorized by its level of hazardousness and disposal requirements, based on data from the International Atomic Energy Agency (IAEA).

Storage and Disposal

Nuclear provides about 10% of global electricity generation.

Nuclear waste, produced as a result of this, can be divided into four different types:

  • Very low-level waste: Waste suitable for near-surface landfills, requiring lower containment and isolation.
  • Low-level waste: Waste needing robust containment for up to a few hundred years, suitable for disposal in engineered near-surface facilities.
  • Intermediate-level waste: Waste that requires a greater degree of containment and isolation than that provided by near-surface disposal.
  • High-level waste: Waste is disposed of in deep, stable geological formations, typically several hundred meters below the surface.

Despite safety concerns, high-level radioactive waste constitutes less than 0.25% of total radioactive waste reported to the IAEA.

Waste ClassDisposed (cubic meters)Stored (cubic meters)Total (cubic meters)
Very low-level waste758,802313,8821,072,684
Low-level waste1,825,558204,8582,030,416
Intermediate level waste671,097201,893872,990
High-level waste3,9605,3239,283

Stored and disposed radioactive waste reported to the IAEA under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Data is from the last reporting year which varies by reporting country, 2019-2023.

The amount of waste produced by the nuclear power industry is small compared to other industrial activities.

While flammable liquids comprise 82% of the hazardous materials shipped annually in the U.S., radioactive waste accounts for only 0.01%.

Continue Reading