Connect with us

Technology Metals

Visualizing All the Metals for Renewable Tech



All the Metals for Renewable Tech

This graphic takes the data from the World Bank’s Climate Smart Report and outlines what metals each renewable technology will require and their overlapping uses.

Visualizing the Metals for Renewable Tech

The energy transition will be mineral intensive and create massive demand for all the metals in renewable tech. Electricity from renewable technology grew at the fastest rate in two decades in 2020, according to a report from the International Energy Agency (IEA).

Consequently, as the pace of the energy transition gains further momentum, the demand for metals will increase. But which ones?

As shown above, the graphic takes data from the World Bank’s Climate Smart Report outlines what metals each renewable technology will require and their overlapping uses.

All the Metals for Renewable Tech

According to the IEA, the number and amount metals used vary by technology. Lithium, nickel, cobalt, manganese and graphite are important for battery performance, durability, and energy density. Rare earth elements are in the permanent magnets that help spin wind turbines and EV motors.

kg/vehicleCopperLithiumNickelManganeseCobaltGraphiteZincRare earthsOthers
Electric car53.28.939.924.513.366.
Conventional car22.30011.2000.100.3
Source: IEA

In particular, a typical electric car requires six times the minerals of a conventional car, and an onshore wind farm requires nine times more minerals than a gas-fired power plant with a similar output. Electricity grids need massive amounts of copper and aluminum, with copper being a keystone for all electricity-related technologies.

kg/MWCopper Nickel Manganese Cobalt Chromium Molybdenum ZincRare earths
Offshore wind8,00024079005251095,500239
Onshore wind2,9004047800470995,50014
Solar PV2,8221.30000300
Natural gas1,1001601.848.34000
Source: IEA

Inevitably, more mining must happen to provide the minerals for a renewable energy transition. According to the IEA, reaching the goals of the Paris Agreement would quadruple mineral demand by 2040.

Limited Resources, High Prices

Eventually, a rapid increase in demand for minerals will create opportunities and challenges in meeting sustainability goals. There is a lack of investment in new mine supply which could substantially raise the costs of clean energy technologies.

In fact, the mining industry needs to invest $1.7 trillion over the next 15 years to supply enough metals for renewable tech, according to consultancy Wood Mackenzie.

However, the mining industry is not ready to support an accelerated energy transition. While there are a host of projects at varying stages of development, there are many risks that could increase supply constraints and price volatility:

  • High geographical concentration of production
  • Long project development lead times
  • Declining resource quality
  • Growing scrutiny of environmental and social performance
  • Higher exposure to climate risks

In addition, some nations are in a better position than others to secure the metals they need for renewable technologies. Attaining these new sources will be vital and valuable for a clean energy future.

Click for Comments


How Is Aluminum Made?

Aluminum is one of the world’s most widely used metals, but producing it is a complex process. Here’s a look at where it comes from.



how is aluminum made?

How is Aluminum Made?

Aluminum is one of our most widely-used metals, found in everything from beer cans to airplane parts.

However, the lightweight metal doesn’t occur naturally, and producing it is a complex process.

The above infographics use data from the USGS, Aluminium Leader, and other sources to break down the three stages of aluminum production.

The Three Stages of Aluminum Production

Each year, the world produces around 390 million tonnes of bauxite rock, and 85% of it is used to make aluminum.

Bauxites are rocks composed of aluminum oxides along with other minerals and are the world’s primary source of aluminum. After mining, bauxite is refined into alumina, which is then converted into aluminum.

Therefore, aluminum typically goes from ore to metal in three stages.

Stage 1: Mining Bauxite

Bauxite is typically extracted from the ground in open-pit mines, with just three countries—Australia, China, and Guinea—accounting for 72% of global mine production.

Country2021 Mine Production of Bauxite (tonnes)% of Total
Australia 🇦🇺110,000,00028.2%
China 🇨🇳86,000,00022.1%
Guinea 🇬🇳85,000,00021.8%
Brazil 🇧🇷32,000,0008.2%
India 🇮🇳22,000,0005.6%
Indonesia 🇮🇩18,000,0004.6%
Russia 🇷🇺6,200,0001.6%
Jamaica 🇯🇲5,800,0001.5%
Kazakhstan 🇰🇿5,200,0001.3%
Saudi Arabia 🇸🇦4,300,0001.1%
Rest of the World 🌍15,500,0004.0%

Australia is by far the largest bauxite producer, and it’s also home to the Weipa Mine, the biggest bauxite mining operation globally.

Guinea, the third-largest producer, is endowed with more than seven billion tonnes of bauxite reserves, more than any other country. Additionally, Guinea is the top exporter of bauxite globally, with 76% of its bauxite exports going to China.

After bauxite is out of the ground, it is sent to refineries across the globe to make alumina, marking the second stage of the production process.

Stage 2: Alumina Production

In the 1890s, Austrian chemist Carl Josef Bayer invented a revolutionary process for extracting alumina from bauxite. Today—over 100 years later—some 90% of alumina refineries still use the Bayer process to refine bauxite.

Here are the four key steps in the Bayer process:

  1. Digestion:
    Bauxite is mixed with sodium hydroxide and heated under pressure. At this stage, the sodium hydroxide selectively dissolves aluminum oxide from the bauxite, leaving behind other minerals as impurities.
  2. Filtration:
    Impurities are separated and filtered from the solution, forming a residue known as red mud. After discarding the mud, aluminum oxide is converted into sodium aluminate.
  3. Precipitation:
    The sodium aluminate solution is cooled and precipitated into a solid, crystallized form of aluminum hydroxide.
  4. Calcination:
    The aluminum hydroxide crystals are washed and heated in calciners to form pure aluminum oxide—a sandy white material known as alumina.

The impurities or red mud left behind in the alumina production process is a major environmental concern. In fact, for every tonne of alumina, refineries produce 1.2 tonnes of red mud, and there are over three billion tonnes of it stored in the world today.

China, the second-largest producer and largest importer of bauxite, supplies more than half of the world’s alumina.

Country2021 alumina production (tonnes)% of total
China 🇨🇳74,000,00053%
Australia 🇦🇺21,000,00015%
Brazil 🇧🇷11,000,0008%
India 🇮🇳6,800,0005%
Russia 🇷🇺3,100,0002%
Germany 🇩🇪1,900,0001%
Ireland 🇮🇪1,900,0001%
Saudi Arabia 🇸🇦1,800,0001%
Ukraine 🇺🇦1,700,0001%
Spain 🇪🇸1,600,0001%
Rest of the World 🌍15,100,00011%

Several major producers of bauxite, including Australia, Brazil, and India, are among the largest alumina producers, although none come close to China.

Alumina has applications in multiple industries, including plastics, cosmetics, and chemical production. But of course, the majority of it is shipped to smelters to make aluminum.

Stage 3: Aluminum Production

Alumina is converted into aluminum through electrolytic reduction. Besides alumina itself, another mineral called cryolite is key to the process, along with loads of electricity. Here’s a simplified overview of how aluminum smelting works:

  1. In aluminum smelter facilities, hundreds of electrolytic reduction cells are filled up with molten cryolite.
  2. Alumina (composed of two aluminum atoms and three oxygen atoms) is then dumped into these cells, and a strong electric current breaks the chemical bond between aluminum and oxygen atoms.
  3. The electrolysis results in pure liquid aluminum settling at the bottom of the cell, which is then purified and cast into its various shapes and sizes.

China dominates global aluminum production and is also the largest consumer. Its neighbor India is the second-largest producer, making only a tenth of China’s output.

Country2021 Aluminum Smelter Production (tonnes)% of total
China 🇨🇳39,000,00059%
India 🇮🇳3,900,0006%
Russia 🇷🇺3,700,0006%
Canada 🇨🇦3,100,0005%
United Arab Emirates 🇦🇪2,600,0004%
Australia 🇦🇺1,600,0002%
Bahrain 🇧🇭1,500,0002%
Iceland 🇮🇸880,0001%
U.S. 🇺🇸880,0001%
Rest of the World 🌍9,400,00014%

As is the case for alumina production, some of the countries that produce bauxite and alumina also produce aluminum, such as India, Australia, and Russia.

Roughly a quarter of annually produced aluminum is used by the construction industry. Another 23% goes into vehicle frames, wires, wheels, and other parts of the transportation industry. Aluminum foil, cans, and packaging also make up another major end-use with a 17% consumption share.

Aluminum’s widespread applications have made it one of the most valuable metal markets. In 2021, the global aluminum market was valued at around $245.7 billion, and as consumption grows, it’s projected to nearly double in size to $498.5 billion by 2030.

Continue Reading

Technology Metals

How Strong Are Rare Earth Magnets?

Rare earth magnets are the most powerful magnets in the world. How does their strength compare with other common magnets?



rare earth magnets

How Strong Are Rare Earth Magnets?

Magnets are an integral part of many technologies and appliances in the 21st century.

From tiny fridge magnets that hold to-do lists to powerful ones that create magnetic fields for electricity generation from wind turbines, there are many different types of magnets.

The world’s strongest magnets, also known as rare earth magnets, are made by alloying certain rare earth elements with other materials.

But just how strong are rare earth magnets, and what makes them so powerful?

Measuring Magnet Strength

The above infographic uses data from First4Magnets to compare the strength of magnets. But before looking at the strongest magnets, it’s essential to understand how to measure magnetic strength.

The maximum energy product, measured in mega-gauss-oersteds (MGOe), is one of the primary indicators of magnetic strength. It is a multiplication of two measurements: a magnet’s remanence and its coercivity.

  • Remanence:
    To become magnets, ferromagnetic substances need to enter the magnetic field of an existing magnet. Remanence, measured in Gauss, is the magnetism left in the magnet after removing the external magnetic field.
  • Coercivity:
    Coercivity is the energy required to bring a magnetic material’s magnetism down to zero. Measured in oersteds, it essentially captures the magnetic material’s resistance to demagnetization.

The Strength of Rare Earth Magnets

Each magnet has a grade, which typically denotes its strength. For example, a neodymium magnet of grade N42 has a strength of 42MGOe.

To put the power of two common rare earth magnet grades into perspective, here’s how their strength compares with common grades of other permanent magnets:

Magnet (Grade)CompositionMaximum Energy Product (MGOe)
Neodymium (N42)Neodymium, iron, boron42
Samarium Cobalt (SmCo 2:17)Samarium, cobalt28
Alnico (Alnico-5)Iron, aluminum, nickel, cobalt5.5
Ferrite (Ferrite-8)Ceramics, iron oxide3.5
Magnetic rubber (Grade Y)Strontium or barium, synthetic rubber, PVC0.8

Note: While the N42 neodymium magnet is used more commonly, the strongest available magnet is of grade N52.

Neodymium and samarium—two of the 17 rare earth elements—are ferromagnetic, meaning that they have inherent magnetic properties and can be magnetized. These metals are first mined, refined, and then combined with materials like iron, boron, and/or cobalt to make the strongest magnetic alloys.

Neodymium magnets are typically composed of one-third neodymium, along with iron and boron. Some of the neodymium in magnets can be replaced with praseodymium, another rare earth material. For this reason, neodymium magnets are also known as NdPr magnets.

Due to their strength, neodymium magnets have found their way into various technologies, from phones and laptops to motors in electric vehicles. In fact, according to Adamas Intelligence, 90% of all EV motors use NdPr magnets. Because these magnets also offer relatively high strength for a smaller size, they are also the predominant choice for wind turbines, reducing turbine weight significantly.

Samarium-cobalt magnets exhibit exceptional resistance to extreme temperatures. These magnets can operate from temperatures as low as -270℃ up to 350℃ and are also highly resistant to corrosion. Consequently, they have important applications in harsh marine environments and technologies with high operating temperatures.

The Demand for Neodymium Magnets

Global EV sales more than doubled last year, up from around 3 million cars in 2020 to 6.6 million in 2021. Similarly, renewable energy is expanding at a record pace, with capacity installations in 2022 set to break the record set the previous year.

With that in mind, it’s no surprise that the demand for rare earth magnets is expected to increase. Neodymium magnet consumption is forecasted to grow from more than 100,000 tonnes in 2020 to 300,000 tonnes by 2035, with EVs and wind turbines driving growth.

However, the supply chain of neodymium magnets remains a concern with China controlling the majority of rare earth extraction, refining, and downstream magnet production.

Continue Reading


Latest News

The latest news from our sponsors: