Connect with us

Electrification

Ranked: Top 25 Nations Producing Battery Metals for the EV Supply Chain

Published

on

How to Use: Click the arrows on the left/right to navigate between current and projected rankings.

battery metals
battery metals
Battery metals top 25 2020
Battery metals top 25 2025
previous arrow
next arrow

The Role of Mining in the EV Battery Supply Chain

Batteries are one of the most important and expensive components of electric vehicles (EVs). The vast majority of EVs use lithium-ion (Li-ion) batteries, which harness the properties of minerals and elements to power the vehicles. But batteries do not grow on trees—the raw materials for them, known as “battery metals”, have to be mined and refined.

The above graphic uses data from BloombergNEF to rank the top 25 countries producing the raw materials for Li-ion batteries.

Battery Metals: The Critical Raw Materials for EV Batteries

The raw materials that batteries use can differ depending on their chemical compositions. However, there are five battery minerals that are considered critical for Li-ion batteries:

  • Cobalt
  • Graphite
  • Lithium
  • Manganese
  • Nickel

Miners extract these minerals from economically viable deposits and refine them from their raw forms into high-quality products and chemicals for EV batteries.

The Top 25 Nations Supplying Battery Metals

Some countries are more crucial than others to the battery metal supply chain. BloombergNEF ranked the top 25 countries according to the following methodology:

  1. First, they tallied the mineral resources, mining capacity, and refining capacity in 2020 and projected commissioned capacity by 2025 for the five key metals listed above in each country.
  2. Then, to determine the overall score for each country, BloombergNEF categorized the countries’ capacities into five bands. Countries in the lowest band received a score of 1 and those in the highest band received a score of 5.
  3. The overall score is the result of averaging the scores across the five categories for each country.

Now that we have a better understanding of how the rankings work, here are the top 25 nations for raw materials in the Li-ion supply chain in 2020 and 2025.

Country2020 Rank2025 Projected RankChange in Rank
China110
Australia220
Brazil37-4
Canada43+1
South Africa54+1
Chile64+2
Indonesia74+3
Democratic Republic of Congo (DRC)810-2
India913-4
Philippines913-4
Finland1110+1
Japan128+4
Argentina128+4
Mexico12120
U.S.1513+2
Vietnam1617-1
South Korea1716+1
Germany1722-5
U.K.17170
France17170
Czech Republic17170
Sweden2217+5
Poland22220
Hungary22220
Thailand22220

China’s dominance in the rankings shows that refining capacity is just as important, if not more, as access to raw materials and mining capacity.

China does not boast an abundance of battery metal deposits but ranks first largely due to its control over 80% of global raw material refining capacity. Additionally, China is the world’s largest producer of graphite, the primary anode material for Li-ion batteries.

Australia comes in at number two due to its massive lithium production capacity and nickel reserves. Following Australia is Brazil, one of the world’s top 10 producers of graphite, nickel, manganese, and lithium.

On the other end of the spectrum, Poland, Hungary, Sweden, and Thailand are tied at rank 22. However, it’s important to note that these are among the top 10 countries for cell and component manufacturing—the next step in the lithium-ion battery supply chain.

Countries on the Rise

Sweden’s rank rises five places between 2020 and 2025p, largely due to an expected increase in its mining capacity with nickel and graphite projects in the pipeline. Argentina is projected to jump up to eighth place thanks to its massive lithium resources and multiple mining projects in advanced stages.

Moreover, Japan is projected to move up four places with its first lithium hydroxide refining plant under construction. In addition, Japanese miner Sumitomo Metal Mining is planning to double battery metal production by 2028.

Although China will likely maintain its dominance for the foreseeable future, other countries are ramping up their mining and refining capacities. Given the increasing importance of EVs, it will be interesting to see how the battery metals supply chain evolves going forward.

Support the Future of Data Storytelling

Sorry to interrupt your reading, but we have a favor to ask. At Visual Capitalist we believe in a world where data can be understood by everyone. That’s why we want to build the VC App - the first app of its kind combining verifiable and transparent data with beautiful, memorable visuals. All available for free.

As a small, independent media company we don’t have the expertise in-house or the funds to build an app like this. So we’re asking our community to help us raise funds on Kickstarter.

If you believe in data-driven storytelling, join the movement and back us on Kickstarter!

Thank you.

Support the future of data storytelling, back us on Kickstarter
Click for Comments

Electrification

EVs vs. Gas Vehicles: What Are Cars Made Out Of?

Electric vehicles can have 6 times more minerals than a combustion vehicle and be on average 340 kg heavier.

Published

on

What are Cars Made Out of? Electric Vehicles vs Gas Cars

EVs vs. Gas Vehicles: What Are Cars Made Out Of?

Electric vehicles (EVs) require a wider range of minerals for their motors and batteries compared to conventional cars.

In fact, an EV can have up to six times more minerals than a combustion vehicle, making them on average 340 kg (750 lbs) heavier.

This infographic, based on data from the International Energy Agency (IEA), compares the minerals used in a typical electric car with a conventional gas car.

Editor’s note: Steel and aluminum are not shown in analysis. Mineral values are for the entire vehicle including batteries and motors.

Batteries Are Heavy

Sales of electric cars are booming and the rising demand for minerals used in EVs is already posing a challenge for the mining industry to keep up. That’s because, unlike gas cars that run on internal combustion engines, EVs rely on huge, mineral-intensive batteries to power the car.

For example, the average 60 kilowatt-hour (kWh) battery pack—the same size that’s used in a Chevy Bolt—alone contains roughly 185 kilograms of minerals, or about 10 times as much as in a typical car battery (18 kg).

Lithium, nickel, cobalt, manganese, and graphite are all crucial to battery performance, longevity, and energy density. Furthermore, EVs can contain more than a mile of copper wiring inside the stator to convert electric energy into mechanical energy.

Out of the eight minerals in our list, five are not used in conventional cars: graphite, nickel, cobalt, lithium, and rare earths.

MineralContent in electric vehicles (kg)Content in conventional cars (kg)
Graphite (natural and synthetic)66.30
Copper53.222.3
Nickel39.90
Manganese24.511.2
Cobalt13.30
Lithium8.90
Rare earths0.50
Zinc0.10.1
Others0.30.3

Minerals listed for the electric car are based on the IEA’s analysis using a 75 kWh battery pack with a NMC 622 cathode and graphite-based anode.

Since graphite is the primary anode material for EV batteries, it’s also the largest component by weight. Although materials like nickel, manganese, cobalt, and lithium are smaller components individually, together they make up the cathode, which plays a critical role in determining EV performance.

Although the engine in conventional cars is heavier compared to EVs, it requires fewer minerals. Engine components are usually made up of iron alloys, such as structural steels, stainless steels, iron base sintered metals, as well as cast iron or aluminum alloyed parts.

EV motors, however, often rely on permanent magnets made of rare earths and can contain up to a mile of copper wiring that converts electric energy into mechanical energy.

The EV Impact on Metals Markets

The growth of the EV market is not only beginning to have a noticeable impact on the automobile industry but the metals market as well.

EVs and battery storage have already displaced consumer electronics to become the largest consumer of lithium and are set to take over from the stainless steel industry as the largest end-user of nickel by 2040.

In 2021 H2, 84,600 tonnes of nickel were deployed onto roads globally in the batteries of all newly sold passenger EVs combined, 59% more than in 2020 H2. Moreover, another 107,200 tonnes of lithium carbonate equivalent (LCE) were deployed globally in new EV batteries, an 88% increase year-on-year.

With rising government support and consumers embracing electric vehicles, securing the supply of the materials necessary for the EV revolution will remain a top priority.

Continue Reading

Electrification

The Key Minerals in an EV Battery

Which key minerals power the lithium-ion batteries in electric vehicles?

Published

on

minerals in an EV battery infographic

Breaking Down the Key Minerals in an EV Battery

Inside practically every electric vehicle (EV) is a lithium-ion battery that depends on several key minerals that help power it.

Some minerals make up intricate parts within the cell to ensure the flow of electrical current. Others protect it from accidental damage on the outside.

This infographic uses data from the European Federation for Transport and Environment to break down the key minerals in an EV battery. The mineral content is based on the ‘average 2020 battery’, which refers to the weighted average of battery chemistries on the market in 2020.

The Battery Minerals Mix

The cells in the average battery with a 60 kilowatt-hour (kWh) capacity—the same size that’s used in a Chevy Bolt—contained roughly 185 kilograms of minerals. This figure excludes materials in the electrolyte, binder, separator, and battery pack casing.

MineralCell PartAmount Contained in the Avg. 2020 Battery (kg)% of Total
GraphiteAnode52kg28.1%
AluminumCathode, Casing, Current collectors35kg18.9%
NickelCathode29kg15.7%
CopperCurrent collectors20kg10.8%
SteelCasing20kg10.8%
ManganeseCathode10kg5.4%
CobaltCathode8kg4.3%
LithiumCathode6kg3.2%
IronCathode5kg2.7%
TotalN/A185kg100%

The cathode contains the widest variety of minerals and is arguably the most important and expensive component of the battery. The composition of the cathode is a major determinant in the performance of the battery, with each mineral offering a unique benefit.

For example, NMC batteries, which accounted for 72% of batteries used in EVs in 2020 (excluding China), have a cathode composed of nickel, manganese, and cobalt along with lithium. The higher nickel content in these batteries tends to increase their energy density or the amount of energy stored per unit of volume, increasing the driving range of the EV. Cobalt and manganese often act as stabilizers in NMC batteries, improving their safety.

Altogether, materials in the cathode account for 31.3% of the mineral weight in the average battery produced in 2020. This figure doesn’t include aluminum, which is used in nickel-cobalt-aluminum (NCA) cathode chemistries, but is also used elsewhere in the battery for casing and current collectors.

Meanwhile, graphite has been the go-to material for anodes due to its relatively low cost, abundance, and long cycle life. Since the entire anode is made up of graphite, it’s the single-largest mineral component of the battery. Other materials include steel in the casing that protects the cell from external damage, along with copper, used as the current collector for the anode.

Minerals Bonded by Chemistry

There are several types of lithium-ion batteries with different compositions of cathode minerals. Their names typically allude to their mineral breakdown.

For example:

  • NMC811 batteries cathode composition:
    80% nickel
    10% manganese
    10% cobalt
  • NMC523 batteries cathode composition:
    50% nickel
    20% manganese
    30% cobalt

Here’s how the mineral contents differ for various battery chemistries with a 60kWh capacity:

battery minerals by chemistry

With consumers looking for higher-range EVs that do not need frequent recharging, nickel-rich cathodes have become commonplace. In fact, nickel-based chemistries accounted for 80% of the battery capacity deployed in new plug-in EVs in 2021.

Lithium iron phosphate (LFP) batteries do not use any nickel and typically offer lower energy densities at better value. Unlike nickel-based batteries that use lithium hydroxide compounds in the cathode, LFP batteries use lithium carbonate, which is a cheaper alternative. Tesla recently joined several Chinese automakers in using LFP cathodes for standard-range cars, driving the price of lithium carbonate to record highs.

The EV battery market is still in its early hours, with plenty of growth on the horizon. Battery chemistries are constantly evolving, and as automakers come up with new models with different characteristics, it’ll be interesting to see which new cathodes come around the block.

Continue Reading

Subscribe

Latest News

The latest news from our sponsors:

Popular