Connect with us


Mapped: Solar Power by Country in 2021



Solar Power by Country

Mapped: Solar Power by Country in 2021

The world is adopting renewable energy at an unprecedented pace, and solar power is leading the way.

Despite a 4.5% fall in global energy demand in 2020, renewable energy technologies showed promising progress. While the growth in renewables was strong across the board, solar power led from the front with 127 gigawatts installed in 2020, its largest-ever annual capacity expansion.

The above infographic uses data from the International Renewable Energy Agency (IRENA) to map solar power capacity by country in 2021. This includes both solar photovoltaic (PV) and concentrated solar power capacity.

The Solar Power Leaderboard

From the Americas to Oceania, countries in virtually every continent (except Antarctica) added more solar to their mix last year. Here’s a snapshot of solar power capacity by country at the beginning of 2021:

CountryInstalled capacity, megawattsWatts* per capita% of world total
China 🇨🇳 254,35514735.6%
U.S. 🇺🇸 75,57223110.6%
Japan 🇯🇵 67,0004989.4%
Germany 🇩🇪 53,7835937.5%
India 🇮🇳 39,211325.5%
Italy 🇮🇹 21,6003453.0%
Australia 🇦🇺 17,6276372.5%
Vietnam 🇻🇳 16,504602.3%
South Korea 🇰🇷 14,5752172.0%
Spain 🇪🇸 14,0891862.0%
United Kingdom 🇬🇧 13,5632001.9%
France 🇫🇷 11,7331481.6%
Netherlands 🇳🇱 10,2133961.4%
Brazil 🇧🇷 7,881221.1%
Turkey 🇹🇷 6,668730.9%
South Africa 🇿🇦 5,990440.8%
Taiwan 🇹🇼 5,8171720.8%
Belgium 🇧🇪 5,6463940.8%
Mexico 🇲🇽 5,644350.8%
Ukraine 🇺🇦 5,3601140.8%
Poland 🇵🇱 3,936340.6%
Canada 🇨🇦 3,325880.5%
Greece 🇬🇷 3,2472580.5%
Chile 🇨🇱 3,2051420.4%
Switzerland 🇨🇭 3,1182950.4%
Thailand 🇹🇭 2,988430.4%
United Arab Emirates 🇦🇪 2,5391850.4%
Austria 🇦🇹 2,2201780.3%
Czech Republic 🇨🇿 2,0731940.3%
Hungary 🇭🇺 1,9531310.3%
Egypt 🇪🇬 1,694170.2%
Malaysia 🇲🇾 1,493280.2%
Israel 🇮🇱 1,4391340.2%
Russia 🇷🇺 1,42870.2%
Sweden 🇸🇪 1,417630.2%
Romania 🇷🇴 1,387710.2%
Jordan 🇯🇴 1,3591000.2%
Denmark 🇩🇰 1,3001860.2%
Bulgaria 🇧🇬 1,0731520.2%
Philippines 🇵🇭 1,04890.1%
Portugal 🇵🇹 1,025810.1%
Argentina 🇦🇷 764170.1%
Pakistan 🇵🇰 73760.1%
Morocco 🇲🇦 73460.1%
Slovakia 🇸🇰 593870.1%
Honduras 🇭🇳 514530.1%
Algeria 🇩🇿 448100.1%
El Salvador 🇸🇻 429660.1%
Iran 🇮🇷 41450.1%
Saudi Arabia 🇸🇦 409120.1%
Finland 🇫🇮 391390.1%
Dominican Republic 🇩🇴 370340.1%
Peru 🇵🇪 331100.05%
Singapore 🇸🇬 329450.05%
Bangladesh 🇧🇩 30120.04%
Slovenia 🇸🇮 2671280.04%
Uruguay 🇺🇾 256740.04%
Yemen 🇾🇪 25380.04%
Iraq 🇮🇶 21650.03%
Cambodia 🇰🇭 208120.03%
Cyprus 🇨🇾 2001470.03%
Panama 🇵🇦 198460.03%
Luxembourg 🇱🇺 1952440.03%
Malta 🇲🇹 1843120.03%
Indonesia 🇮🇩 17210.02%
Cuba 🇨🇺 163140.02%
Belarus 🇧🇾 159170.02%
Senegal 🇸🇳 15580.02%
Norway 🇳🇴 152170.02%
Lithuania 🇱🇹 148370.02%
Namibia 🇳🇦 145550.02%
New Zealand 🇳🇿 142290.02%
Estonia 🇪🇪 130980.02%
Bolivia 🇧🇴 120100.02%
Oman 🇴🇲 109210.02%
Colombia 🇨🇴 10720.01%
Kenya 🇰🇪 10620.01%
Guatemala 🇬🇹10160.01%
Croatia 🇭🇷 85170.01%
World total 🌎 713,97083100.0%

*1 megawatt = 1,000,000 watts.

China is the undisputed leader in solar installations, with over 35% of global capacity. What’s more, the country is showing no signs of slowing down. It has the world’s largest wind and solar project in the pipeline, which could add another 400,000MW to its clean energy capacity.

Following China from afar is the U.S., which recently surpassed 100,000MW of solar power capacity after installing another 50,000MW in the first three months of 2021. Annual solar growth in the U.S. has averaged an impressive 42% over the last decade. Policies like the solar investment tax credit, which offers a 26% tax credit on residential and commercial solar systems, have helped propel the industry forward.

Although Australia hosts a fraction of China’s solar capacity, it tops the per capita rankings due to its relatively low population of 26 million people. The Australian continent receives the highest amount of solar radiation of any continent, and over 30% of Australian households now have rooftop solar PV systems.

China: The Solar Champion

In 2020, President Xi Jinping stated that China aims to be carbon neutral by 2060, and the country is taking steps to get there.

China is a leader in the solar industry, and it seems to have cracked the code for the entire solar supply chain. In 2019, Chinese firms produced 66% of the world’s polysilicon, the initial building block of silicon-based photovoltaic (PV) panels. Furthermore, more than three-quarters of solar cells came from China, along with 72% of the world’s PV panels.

With that said, it’s no surprise that 5 of the world’s 10 largest solar parks are in China, and it will likely continue to build more as it transitions to carbon neutrality.

What’s Driving the Rush for Solar Power?

The energy transition is a major factor in the rise of renewables, but solar’s growth is partly due to how cheap it has become over time. Solar energy costs have fallen exponentially over the last decade, and it’s now the cheapest source of new energy generation.

Since 2010, the cost of solar power has seen a 85% decrease, down from $0.28 to $0.04 per kWh. According to MIT researchers, economies of scale have been the single-largest factor in continuing the cost decline for the last decade. In other words, as the world installed and made more solar panels, production became cheaper and more efficient.

This year, solar costs are rising due to supply chain issues, but the rise is likely to be temporary as bottlenecks resolve.

Click for Comments


Will Direct Lithium Extraction Disrupt the $90B Lithium Market?

Visual Capitalist and EnergyX explore how direct lithium extraction could disrupt the $90B lithium industry.



Will Direct Lithium Extraction Disrupt the $90B Lithium Market?

Current lithium extraction and refinement methods are outdated, often harmful to the environment, and ultimately inefficient. So much so that by 2030, lithium demand will outstrip supply by a projected 1.42 million metric tons. But there is a solution: Direct lithium extraction (DLE).

For this graphic, we partnered with EnergyX to try to understand how DLE could help meet global lithium demands and change an industry that is critical to the clean energy transition.

The Lithium Problem

Lithium is crucial to many renewable energy technologies because it is this element that allows EV batteries to react. In fact, it’s so important that projections show the lithium industry growing from $22.2B in 2023 to nearly $90B by 2030.

But even with this incredible growth, as you can see from the table, refined lithium production will need to increase 86.5% over and above current projections.

2022 (million metric tons)2030P (million metric tons)
Lithium Carbonate Demand0.461.21
Lithium Hydroxide Demand0.181.54
Lithium Metal Demand00.22
Lithium Mineral Demand0.070.09
Total Demand0.713.06
Total Supply0.751.64

The Solution: Direct Lithium Extraction

DLE is a process that uses a combination of solvent extraction, membranes, or adsorbents to extract and then refine lithium directly from its source. LiTASTM, the proprietary DLE technology developed by EnergyX, can recover an incredible 300% more lithium per ton than existing processes, making it the perfect tool to help meet lithium demands.

Additionally, LiTASTM can refine lithium at the lowest cost per unit volume directly from brine, an essential step in meeting tomorrow’s lithium demand and manufacturing next-generation batteries, while significantly reducing the footprint left by lithium mining.

Hard Rock MiningUnderground ReservoirsDirect Lithium Extraction
Direct CO2 Emissions15,000 kg5,000 kg3.5 kg
Water Use170 m3469 m334-94 m3
Lithium Recovery Rate58%30-40%90%
Land Use464 m23124 m20.14 m2
Process TimeVariable18 months1-2 days

Providing the World with Lithium

DLE promises to disrupt the outdated lithium industry by improving lithium recovery rates and slashing emissions, helping the world meet the energy demands of tomorrow’s electric vehicles.

EnergyX is on a mission to become a worldwide leader in the sustainable energy transition using groundbreaking direct lithium extraction technology. Don’t miss your chance to join companies like GM and invest in EnergyX to transform the future of renewable energy.

Continue Reading


Chart: The $400 Billion Lithium Battery Value Chain

In this graphic, we break down where the $400 billion lithium battery industry will generate revenue in 2030.




Breaking Down the $400 Billion Battery Value Chain

As the world transitions away from fossil fuels toward a greener future, the lithium battery industry could grow fivefold by 2030. This shift could create over $400 billion in annual revenue opportunities globally.

For this graphic, we partnered with EnergyX to determine how the battery industry could grow by 2030.

Exploring the Battery Value Chain

The lithium battery value chain has many links within it that each generate their own revenue opportunities, these include:

  • Critical Element Production: Involves the mining and refining of materials used in a battery’s construction.
  • Active materials: Creating and developing materials that react electrochemically to allow batteries to charge and discharge.
  • Battery cells: Involves the production of rechargeable elements of a battery.
  • Battery packs: Producing packs containing a series of connected battery cells. Generally, these come in two types: NMC/NMCA, the standard in North America and Europe, and LFP, the standard in China.
  • Recycling: Reusing battery components within new batteries.

But these links aren’t equal, each one is projected to generate different levels of revenue by 2030:

China 🇨🇳Europe 🇪🇺United States 🇺🇸Rest of World 🌍
Critical Element Production$37B$25B$15B$8B
Active Materials$54B$31B$14B$11B
Battery Packs$34B$22B$11B$7B
Battery Cells$53B$37B$20B$11B

On the surface, battery cell production may contribute the most revenue to the battery value chain. However, lithium production can generate margins as high as 65%, meaning lithium production has potential to yield large margins.

How Much Lithium Is Available?

Just a few countries hold 81% of the world’s viable lithium. So, supply bottlenecks could slow the growth of the lithium battery industry:

NationViable Lithium Reserves (2023)
Chile 🇨🇱9.3M t
Australia 🇦🇺6.2M t
Argentina 🇦🇷2.7M t
China 🇨🇳2M t
U.S. 🇺🇸1M t
Rest of World 🌍4.9M t

Supplying the World With Batteries

Supplying the world with lithium is critical to the battery value chain and a successful transition from fossil fuels. Players like the U.S. and the EU, with increasingly large and growing lithium needs, will need to maximize local opportunities and work together to meet demand.

EnergyX is on a mission to become a world leader in the global transition to sustainable energy, using cutting-edge direct lithium extraction to help supply the world with lithium.

Continue Reading