Energy Shift
Who’s Building the Most Solar Energy?
See this visualization first on the Voronoi app.
Who’s Building the Most Solar Energy?
This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.
In 2023, solar energy accounted for three-quarters of renewable capacity additions worldwide. Most of this growth occurred in Asia, the EU, and the U.S., continuing a trend observed over the past decade.
In this graphic, we illustrate the rise in installed solar photovoltaic (PV) capacity in China, the EU, and the U.S. between 2010 and 2022, measured in gigawatts (GW). Bruegel compiled the data.
Chinese Dominance
As of 2022, China’s total installed capacity stands at 393 GW, nearly double that of the EU’s 205 GW and surpassing the USA’s total of 113 GW by more than threefold in absolute terms.
Installed solar capacity (GW) | China | EU27 | U.S. |
---|---|---|---|
2022 | 393.0 | 205.5 | 113.0 |
2021 | 307.0 | 162.7 | 95.4 |
2020 | 254.0 | 136.9 | 76.4 |
2019 | 205.0 | 120.1 | 61.6 |
2018 | 175.3 | 104.0 | 52.0 |
2017 | 130.8 | 96.2 | 43.8 |
2016 | 77.8 | 91.5 | 35.4 |
2015 | 43.6 | 87.7 | 24.2 |
2014 | 28.4 | 83.6 | 18.1 |
2013 | 17.8 | 79.7 | 13.3 |
2012 | 6.7 | 71.1 | 8.6 |
2011 | 3.1 | 53.3 | 5.6 |
2010 | 1.0 | 30.6 | 3.4 |
Since 2017, China has shown a compound annual growth rate (CAGR) of approximately 25% in installed PV capacity, while the USA has seen a CAGR of 21%, and the EU of 16%.
Additionally, China dominates the production of solar power components, currently controlling around 80% of the world’s solar panel supply chain.
In 2022, China’s solar industry employed 2.76 million individuals, with manufacturing roles representing approximately 1.8 million and the remaining 918,000 jobs in construction, installation, and operations and maintenance.
The EU industry employed 648,000 individuals, while the U.S. reached 264,000 jobs.
According to the IEA, China accounts for almost 60% of new renewable capacity expected to become operational globally by 2028.
Despite the phasing out of national subsidies in 2020 and 2021, deployment of solar PV in China is accelerating. The country is expected to reach its national 2030 target for wind and solar PV installations in 2024, six years ahead of schedule.
Energy Shift
How Many New Mines Are Needed for the Energy Transition?
Copper and lithium will require the highest number of new mines.

How Many New Mines Are Needed for the Energy Transition?
Nearly 300 Mines
According to Benchmark Mineral Intelligence, meeting global battery demand by 2030 would require 293 new mines or plants.
Mineral | 2024 Supply (t) | 2030 Demand (t) | Supply Needed (t) | No. of Mines/Plants | Type |
---|---|---|---|---|---|
Lithium | 1,181,000 | 2,728,000 | 1,547,000 | 52 | Mine |
Cobalt | 272,000 | 401,000 | 129,000 | 26 | Mine |
Nickel | 3,566,000 | 4,949,000 | 1,383,000 | 28 | Mine |
Natural Graphite | 1,225,000 | 2,933,000 | 1,708,000 | 31 | Mine |
Synthetic Graphite | 1,820,000 | 2,176,000 | 356,000 | 12 | Plant |
Manganese | 90,000 | 409,000 | 319,000 | 21 | Plant |
Purified Phosphoric Acid | 6,493,000 | 9,001,000 | 2,508,000 | 33 | Plant |
Copper | 22,912,000 | 26,576,000 | 3,664,000 | 61 | Mine |
Rare Earths | 83,711 | 116,663 | 32,952 | 29 | Mine |
Copper, used in wires and other applications, and lithium, essential for batteries, will require the most significant number of new mines.
Manganese production would need to increase more than fourfold to meet anticipated demand.
Not an Easy Task
Building new mines is one of the biggest challenges in reaching the expected demand.
After discovery and exploration, mineral projects must go through a lengthy process of research, permitting, and funding before becoming operational.
In the U.S., for instance, developing a new mine can take 29 years.
In contrast, Ghana, the Democratic Republic of Congo, and Laos have some of the shortest development times in the world, at roughly 10 to 15 years.
Energy Shift
Visualizing Europe’s Dependence on Chinese Resources
Europe depends entirely on China for heavy rare earth elements, critical for technologies such as hybrid cars and fiber optics.

Visualizing Europe’s Dependence on Chinese Resources
This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.
Despite efforts by European countries to reduce their reliance on China for critical materials, the region remains heavily dependent on Chinese resources.
This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries. Bloomberg published this data in May 2024 based on European Commission research.
China’s Dominance in Clean Energy Minerals
Europe is 100% dependent on China for heavy rare earth elements used in technologies such as hybrid cars, fiber optics, and nuclear power.
Additionally, 97% of the magnesium consumed in Europe, for uses ranging from aerospace alloys to automotive parts, comes from the Asian country.
Raw Material | Percentage Supplied by China | Usage |
---|---|---|
Heavy rare earth elements | 100% | nuclear reactors, TV screens, fiber optics |
Magnesium | 97% | Aerospace alloys, automotive parts |
Light rare earth elements | 85% | Catalysts, aircraft engines, magnets |
Lithium | 79% | Batteries, pharmaceuticals, ceramics |
Gallium | 71% | Semiconductors, LEDs, solar panels |
Scandium | 67% | Aerospace components, power generation, sports equipment |
Bismuth | 65% | Pharmaceuticals, cosmetics, low-melting alloys |
Vanadium | 62% | Steel alloys, aerospace, tools |
Baryte | 45% | Oil and gas drilling, paints, plastics |
Germanium | 45% | Fiber optics, infrared optics, electronics |
Natural graphite | 40% | Batteries, lubricants, refractory materials |
Tungsten | 32% | Cutting tools, electronics, heavy metal alloys |
Almost 80% of the lithium in electric vehicles and electronics batteries comes from China.
Assessing the Risks
The EU faces a pressing concern over access to essential materials, given the apprehension that China could “weaponize” its dominance of the sector.
One proposed solution is the EU’s Critical Raw Materials Act, which entered into force in May 2024.
The act envisions a quota of 10% of all critical raw materials consumed in the EU to be produced within the EU.
Additionally, it calls for a significant increase in recycling efforts, totaling up to 25% of annual consumption in the EU. Lastly, it sets the target of reducing dependency for any critical raw material on a single non-EU country to less than 65% by 2030.
-
Energy Shift3 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc3 years ago
How Is Aluminum Made?
-
Electrification3 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification3 years ago
Visualized: Battery Vs. Hydrogen Fuel Cell