Electrification
Visualizing China’s Evolving Energy Mix
Visualizing China’s Energy Transition in 5 Charts
In September 2020, China’s President Xi Jinping announced the steps his nation would take to reach carbon neutrality by 2060 via videolink before the United Nations Assembly in New York.
This infographic takes a look at what this ambitious plan for China’s energy would look like and what efforts are underway towards this goal.
China’s Ambitious Plan
A carbon-neutral China requires changing the entire economy over the next 40 years, a change the IEA compares to the ambition of the reforms that industrialized the country’s economy in the first place.
China is the world’s largest consumer of electricity, well ahead of the second place consumer, the United States. Currently, 80% of China’s energy comes from fossil fuels, but this plan envisions only 14% coming from coal, oil, and natural gas in 2060.
Energy Source | 2025 | 2060 | % Change |
---|---|---|---|
Coal | 52% | 3% | -94% |
Oil | 18% | 8% | -56% |
Natural Gas | 10% | 3% | -70% |
Wind | 4% | 24% | +500% |
Nuclear | 3% | 19% | +533% |
Biomass | 2% | 5% | +150% |
Solar | 3% | 23% | +667% |
Hydro | 8% | 15% | +88% |
Source: Tsinghua University Institute of Energy, Environment and Economy; U.S. EIA
According to the Carbon Brief, China’s 14th five-year plan appears to enshrine Xi’s goal. This plan outlines a general and non specific list of projects for a new energy system. It includes the construction of eight large-scale clean energy centers, coastal nuclear power, electricity transmission routes, power system flexibility, oil-and-gas transportation, and storage capacity.
Progress Towards Renewables?
While the goal seems far off in the future, China is on a trajectory towards reducing the carbon emissions of its electricity grid with declining coal usage, increased nuclear, and increased solar power capacity.
According to ChinaPower, coal fueled the rise of China with the country using 144 million tonnes of oil equivalent “Mtoe” in 1965, peaking at 1,969 Mtoe in 2013. However, its share as part of the country’s total energy mix has been declining since the 1990s from ~77% to just under ~60%.
Another trend in China’s energy transition will be the greater consumption of energy as electricity. As China urbanized, its cities expanded creating greater demand for electricity in homes, businesses, and everyday life. This trend is set to continue and approach 40% of total energy consumed by 2030 up from ~5% in 1990.
Under the new plan, by 2060, China is set to have 42% of its energy coming from solar and nuclear while in 2025 it is only expected to be 6%. China has been adding nuclear and solar capacity and expects to add the equivalent of 20 new reactors by 2025 and enough solar power for 33 million homes (110GW).
Changing the energy mix away from fossil fuels, while ushering in a new economic model is no small task.
Up to the Task?
China is the world’s factory and has relatively young industrial infrastructure with fleets of coal plants, steel mills, and cement factories with plenty of life left.
However, China also is the biggest investor in low-carbon energy sources, has access to massive technological talent, and holds a strong central government to guide the transition.
The direction China takes will have the greatest impact on the health of the planet and provide guidance for other countries looking to change their energy mixes, for better or for worse.
The world is watching…even if it’s by videolink.
Electrification
How Clean is the Nickel and Lithium in a Battery?
This graphic from Wood Mackenzie shows how nickel and lithium mining can significantly impact the environment, depending on the processes used.

How Clean is the Nickel and Lithium in a Battery?
The production of lithium (Li) and nickel (Ni), two key raw materials for batteries, can produce vastly different emissions profiles.
This graphic from Wood Mackenzie shows how nickel and lithium mining can significantly impact the environment, depending on the processes used for extraction.
Nickel Emissions Per Extraction Process
Nickel is a crucial metal in modern infrastructure and technology, with major uses in stainless steel and alloys. Nickel’s electrical conductivity also makes it ideal for facilitating current flow within battery cells.
Today, there are two major methods of nickel mining:
-
From laterite deposits, which are predominantly found in tropical regions. This involves open-pit mining, where large amounts of soil and overburden need to be removed to access the nickel-rich ore.
-
From sulphide ores, which involves underground or open-pit mining of ore deposits containing nickel sulphide minerals.
Although nickel laterites make up 70% of the world’s nickel reserves, magmatic sulphide deposits produced 60% of the world’s nickel over the last 60 years.
Compared to laterite extraction, sulphide mining typically emits fewer tonnes of CO2 per tonne of nickel equivalent as it involves less soil disturbance and has a smaller physical footprint:
Ore Type | Process | Product | Tonnes of CO2 per tonne of Ni equivalent |
---|---|---|---|
Sulphides | Electric / Flash Smelting | Refined Ni / Matte | 6 |
Laterite | High Pressure Acid Leach (HPAL) | Refined Ni / Mixed Sulpide Precipitate / Mixed Hydroxide Precipitate | 13.7 |
Laterite | Blast Furnace / RKEF | Nickel Pig Iron / Matte | 45.1 |
Nickel extraction from laterites can impose significant environmental impacts, such as deforestation, habitat destruction, and soil erosion.
Additionally, laterite ores often contain high levels of moisture, requiring energy-intensive drying processes to prepare them for further extraction. After extraction, the smelting of laterites requires a significant amount of energy, which is largely sourced from fossil fuels.
Although sulphide mining is cleaner, it poses other environmental challenges. The extraction and processing of sulphide ores can release sulphur compounds and heavy metals into the environment, potentially leading to acid mine drainage and contamination of water sources if not managed properly.
In addition, nickel sulphides are typically more expensive to mine due to their hard rock nature.
Lithium Emissions Per Extraction Process
Lithium is the major ingredient in rechargeable batteries found in phones, hybrid cars, electric bikes, and grid-scale storage systems.
Today, there are two major methods of lithium extraction:
-
From brine, pumping lithium-rich brine from underground aquifers into evaporation ponds, where solar energy evaporates the water and concentrates the lithium content. The concentrated brine is then further processed to extract lithium carbonate or hydroxide.
-
Hard rock mining, or extracting lithium from mineral ores (primarily spodumene) found in pegmatite deposits. Australia, the world’s leading producer of lithium (46.9%), extracts lithium directly from hard rock.
Brine extraction is typically employed in countries with salt flats, such as Chile, Argentina, and China. It is generally considered a lower-cost method, but it can have environmental impacts such as water usage, potential contamination of local water sources, and alteration of ecosystems.
The process, however, emits fewer tonnes of CO2 per tonne of lithium-carbonate-equivalent (LCE) than mining:
Source | Ore Type | Process | Tonnes of CO2 per tonne of LCE |
---|---|---|---|
Mineral | Spodumene | Mine | 9 |
Mineral | Petalite, lepidolite and others | Mine | 8 |
Brine | N/A | Extraction/Evaporation | 3 |
Mining involves drilling, blasting, and crushing the ore, followed by flotation to separate lithium-bearing minerals from other minerals. This type of extraction can have environmental impacts such as land disturbance, energy consumption, and the generation of waste rock and tailings.
Sustainable Production of Lithium and Nickel
Environmentally responsible practices in the extraction and processing of nickel and lithium are essential to ensure the sustainability of the battery supply chain.
This includes implementing stringent environmental regulations, promoting energy efficiency, reducing water consumption, and exploring cleaner technologies. Continued research and development efforts focused on improving extraction methods and minimizing environmental impacts are crucial.
Sign up to Wood Mackenzie’s Inside Track to learn more about the impact of an accelerated energy transition on mining and metals.
Electrification
Life Cycle Emissions: EVs vs. Combustion Engine Vehicles
We look at carbon emissions of electric, hybrid, and combustion engine vehicles through an analysis of their life cycle emissions.

Life Cycle Emissions: EVs vs. Combustion Engine Vehicles
According to the International Energy Agency, the transportation sector is more reliant on fossil fuels than any other sector in the economy. In 2021, it accounted for 37% of all CO2 emissions from end‐use sectors.
To gain insights into how different vehicle types contribute to these emissions, the above graphic visualizes the life cycle emissions of battery electric, hybrid, and internal combustion engine (ICE) vehicles using Polestar and Rivian’s Pathway Report.
Production to Disposal: Emissions at Each Stage
Life cycle emissions are the total amount of greenhouse gases emitted throughout a product’s existence, including its production, use, and disposal.
To compare these emissions effectively, a standardized unit called metric tons of CO2 equivalent (tCO2e) is used, which accounts for different types of greenhouse gases and their global warming potential.
Here is an overview of the 2021 life cycle emissions of medium-sized electric, hybrid and ICE vehicles in each stage of their life cycles, using tCO2e. These numbers consider a use phase of 16 years and a distance of 240,000 km.
Battery electric vehicle | Hybrid electric vehicle | Internal combustion engine vehicle | ||
---|---|---|---|---|
Production emissions (tCO2e) | Battery manufacturing | 5 | 1 | 0 |
Vehicle manufacturing | 9 | 9 | 10 | |
Use phase emissions (tCO2e) | Fuel/electricity production | 26 | 12 | 13 |
Tailpipe emissions | 0 | 24 | 32 | |
Maintenance | 1 | 2 | 2 | |
Post consumer emissions (tCO2e) | End-of-life | -2 | -1 | -1 |
TOTAL | 39 tCO2e | 47 tCO2e | 55 tCO2e |
While it may not be surprising that battery electric vehicles (BEVs) have the lowest life cycle emissions of the three vehicle segments, we can also take some other insights from the data that may not be as obvious at first.
- The production emissions for BEVs are approximately 40% higher than those of hybrid and ICE vehicles. According to a McKinsey & Company study, this high emission intensity can be attributed to the extraction and refining of raw materials like lithium, cobalt, and nickel that are needed for batteries, as well as the energy-intensive manufacturing process of BEVs.
- Electricity production is by far the most emission-intensive stage in a BEVs life cycle. Decarbonizing the electricity sector by implementing renewable and nuclear energy sources can significantly reduce these vehicles’ use phase emissions.
- By recycling materials and components in their end-of-life stages, all vehicle segments can offset a portion of their earlier life cycle emissions.
Accelerating the Transition to Electric Mobility
As we move toward a carbon-neutral economy, battery electric vehicles can play an important role in reducing global CO2 emissions.
Despite their lack of tailpipe emissions, however, it’s good to note that many stages of a BEV’s life cycle are still quite emission-intensive, specifically when it comes to manufacturing and electricity production.
Advancing the sustainability of battery production and fostering the adoption of clean energy sources can, therefore, aid in lowering the emissions of BEVs even further, leading to increased environmental stewardship in the transportation sector.
-
Electrification2 years ago
Ranked: The Top 10 EV Battery Manufacturers
-
Real Assets3 years ago
Visualizing China’s Dominance in Rare Earth Metals
-
Real Assets2 years ago
The World’s Top 10 Gold Mining Companies
-
Electrification1 year ago
The Key Minerals in an EV Battery
-
Misc2 years ago
All the Metals We Mined in One Visualization
-
Misc2 years ago
All the World’s Metals and Minerals in One Visualization
-
Real Assets3 years ago
What is a Commodity Super Cycle?
-
Real Assets3 years ago
How the World’s Top Gold Mining Stocks Performed in 2020