Electrification
Visualizing the Natural Graphite Supply Problem
The following content is sponsored by Northern Graphite.
Visualizing the Natural Graphite Supply Problem
Graphite is a critical mineral for lithium-ion batteries, and its battery demand is expected to grow ten-fold by 2030.
Meeting this increasing demand will require a higher supply of both natural graphite and its synthetic counterpart. However, graphite’s entire supply chain is heavily reliant on China, which makes it vulnerable to disruptions while creating environmental challenges.
This infographic from our sponsor Northern Graphite highlights China’s stronghold over the graphite supply chain and outlines the need for new natural graphite mines.
China’s Dominance in the Graphite Supply Chain
From mining natural graphite to manufacturing battery anodes, China dominates every stage of the graphite supply chain.
For example, in 2020, 59% of global natural graphite production came from China. Mozambique, the second-largest producer, churned out 120,000 tonnes—just one-fifth of Chinese production.
Country | 2020E production, tonnes | % of total |
---|---|---|
China 🇨🇳 | 650,000 | 59.1% |
Mozambique 🇲🇿 | 120,000 | 10.9% |
Brazil 🇧🇷 | 95,000 | 8.6% |
Madagascar 🇲🇬 | 47,000 | 4.3% |
India 🇮🇳 | 34,000 | 3.1% |
Russia 🇷🇺 | 24,000 | 2.2% |
Ukraine 🇺🇦 | 19,000 | 1.7% |
Norway 🇳🇴 | 15,000 | 1.4% |
Pakistan 🇵🇰 | 13,000 | 1.2% |
Canada 🇨🇦 | 10,000 | 0.9% |
Rest of the World 🌎 | 73,000 | 6.6% |
Total | 1,100,000 | 100% |
China’s massive output makes the other top nine countries look substantially smaller in terms of natural graphite production. Moreover, China also dominates the manufacturing of synthetic graphite and the conversion of graphite into anode material for batteries.
In 2018, China produced nearly 80% of all synthetic graphite, and in 2019, it was responsible for 86% of all battery anode material production. This dependence on graphite supply from China puts the supply chain at risk of political disruptions and makes it unsustainable for the long term.
Unsustainable Production: Natural Graphite vs Synthetic Graphite
The carbon footprint of manufacturing partly depends on the source of energy used in production.
Coal dominates China’s energy mix with a 58% share, followed by petroleum and other liquids. This increases the carbon footprint of all production and especially that of synthetic graphite, which involves energy-intensive heat treatment of petroleum coke.
Energy source | Type | % of China's energy consumption (2019) |
---|---|---|
Coal | Fossil fuel | 58% |
Petroleum and other liquids | Fossil fuel | 20% |
Hydro | Renewable | 8% |
Natural gas | Fossil fuel | 8% |
Other renewables | Renewable | 5% |
Nuclear | Non-renewable | 2% |
Total | N/A | 100% |
Percentages may not add to 100% due to rounding.
One study found that producing one kg of synthetic graphite releases 4.9kg of carbon dioxide into the atmosphere, in addition to smaller amounts of sulfur oxide, nitrogen oxide, and particulate matter. While the carbon footprint of natural graphite is substantially smaller, it’s likely that China’s dependence on coal contributes to emissions from production.
Furthermore, concentrated production in China means that all this graphite travels long distances before reaching Western markets like the United States. These extensive shipping distances further exacerbate the risk of disruptions in the graphite supply chain.
The Need for New Sources
As the demand for graphite increases, developing a resilient graphite supply chain is crucial to the European Union and the U.S., both of which have declared graphite a critical mineral.
New graphite mines outside China will be key to meeting graphite’s rising demand and combating a potential supply deficit.
Northern Graphite is positioned to deliver natural graphite in a secure, sustainable, and transparent manner for the green economy.
Electrification
Top 20 Countries by Battery Storage Capacity
China holds about two-thirds of global BESS capacity.

Visualizing the Top 20 Countries by Battery Storage Capacity
Over the past three years, the Battery Energy Storage System (BESS) market has been the fastest-growing segment of global battery demand. These systems store electricity using batteries, helping stabilize the grid, store renewable energy, and provide backup power.
In 2024, the market grew by 52%, compared to 25% growth in the EV battery market. Among the top companies in the BESS market are technology giants such as Samsung, LG, BYD, Panasonic, and Tesla.
This graphic highlights the top 20 BESS markets by current and planned grid capacity in gigawatt hour (GWh), based on exclusive data from Rho Motion as of February 2025.
Chinese Dominance
As with the EV market, China currently dominates global BESS deployments, accounting for approximately two-thirds of installed capacity. However, other markets are expected to grow significantly in the coming years, driven by low-cost lithium-ion cells and the expansion of renewable energy capacity.
Currently, China has 215.5 GWh of installed capacity and an ambitious 505.6 GWh project pipeline. The U.S. follows with 82.1 GWh installed and 162.5 GWh planned.
Top BESS Markets | Installed 2024 (GWh) | 2027P |
---|---|---|
🇨🇳 China | 215.5 | 721.2 |
🇺🇸 USA | 82.1 | 244.6 |
🇬🇧 UK | 7.5 | 56.3 |
🇦🇺 Australia | 5.6 | 102.9 |
🇨🇱 Chile | 3.8 | 41.0 |
🇮🇹 Italy | 2.2 | 7.9 |
🇸🇦 Saudi Arabia | 1.3 | 32.4 |
🇿🇦 South Africa | 1.3 | 9.4 |
🇮🇪 Ireland | 1.6 | 2.5 |
🇵🇭 Philippines | 1.0 | 6.1 |
🇯🇵 Japan | 1.0 | 5.0 |
🇩🇪 Germany | 1.0 | 6.2 |
🇰🇷 South Korea | 1.1 | 1.3 |
🇮🇱 Israel | 0.8 | 4.6 |
🇫🇷 France | 0.6 | 1.8 |
🇧🇪 Belgium | 0.7 | 5.3 |
🇺🇿 Uzbekistan | 0.6 | 5.9 |
🇸🇪 Sweden | 0.6 | 1.5 |
🇮🇳 India | 0.5 | 4.3 |
🇨🇦 Canada | 0.3 | 18.3 |
Canada is projected to be the fastest-growing market through 2027, with its cumulative capacity hitting 18.3 GWh—a significant increase from its current 0.3 GWh capacity.
Countries such as Australia (97.3 GWh pipeline), Saudi Arabia (31.1 GWh), and Chile (37.2 GWh) have relatively small current installations but plan substantial expansions. Within Europe, the UK leads with 7.5 GWh of installed capacity and 48.7 GWh in the pipeline, while Italy, Germany, France, and Belgium show steady but more modest growth.
Despite being technological leaders, Japan (4 GWh pipeline) and South Korea (0.3 GWh) have relatively low planned BESS expansions.
According to Rho Motion, China will remain the dominant player in 2027, but its share of the total market is expected to decline to just over 50% based on the current project pipeline.
While the BESS market is expanding, challenges remain, including grid connection bottlenecks and the development of revenue streams in emerging markets.
Electrification
Visualizing Chinese EV Market Share Overseas
Chinese brands accounted for 62% of global EV sales in 2024.

Visualizing Chinese EV Market Share Overseas
China is the undisputed global powerhouse of the EV industry, leading in both domestic sales and overall production. Chinese brands were responsible for 62% of EV global sales in 2024.
This graphic shows the presence of Chinese electric vehicles in other countries, considering total EV sales and market share. This data comes exclusively from Rho Motion’s EV Sales Quarterly Outlook, as of 2024.
Affordable EVs
As the global EV market has expanded, in 2024, over 17 million units were sold. Chinese manufacturers have aggressively pursued international opportunities, offering affordable vehicles that often undercut local competitors.
However, market access has varied significantly across regions. The U.S. and Canada are the only markets where Chinese-made EVs have no presence. The U.S. has taken a firm stance against Chinese EVs, imposing a 100% tariff in 2024, and more recently enacting laws banning Chinese technology in EVs on U.S. roads. Given its deep economic ties with the U.S., Canada followed suit with identical tariffs.
Country | Total EV Sales | Chinese Market Share |
---|---|---|
🇺🇸 U.S. | 1,540,354 | 0% |
🇩🇪 Germany | 577,630 | 4% |
🇬🇧 UK | 571,141 | 7% |
🇫🇷 France | 464,589 | 5% |
🇨🇦 Canada | 246,424 | 0% |
🇧🇪 Belgium | 192,560 | 3% |
🇳🇱 Netherlands | 190,784 | 6% |
🇸🇪 Sweden | 165,256 | 5% |
🇳🇴 Norway | 126,088 | 9% |
🇧🇷 Brazil | 125,624 | 82% |
🇪🇸 Spain | 122,375 | 10% |
🇮🇹 Italy | 121,889 | 6% |
🇯🇵 Japan | 114,129 | 2% |
🇦🇺 Australia | 113,511 | 26% |
🇮🇳 India | 104,426 | 23% |
🇩🇰 Denmark | 103,202 | 8% |
🇲🇽 Mexico | 95,282 | 70% |
🇹🇭 Thailand | 77,250 | 77% |
🇵🇹 Portugal | 72,070 | 8% |
🇮🇱 Israel | 69,595 | 64% |
🇨🇭 Switzerland | 68,407 | 1% |
🇦🇹 Austria | 63,717 | 11% |
🇮🇩 Indonesia | 43,202 | 75% |
🇫🇮 Finland | 37,881 | 2% |
🇮🇪 Ireland | 30,105 | 9% |
🇸🇬 Singapore | 29,521 | 26% |
🇲🇾 Malaysia | 21,798 | 52% |
🇳🇵 Nepal | 12,705 | 74% |
🇳🇿 New Zealand | 10,027 | 15% |
🇨🇱 Chile | 5,604 | 42% |
Europe, by contrast, has been more open to Chinese EVs but remains cautious about protecting its domestic automotive industry. In 2024, following an anti-subsidy investigation, the EU introduced variable BEV import tariffs on specific Chinese automakers of up to an additional 35.3%.
Meanwhile, in countries without a strong domestic auto industry, Chinese EVs have rapidly gained market share. This is especially evident in neighboring Asian countries and in South and Central America, where Chinese manufacturers are expanding aggressively by beginning to build production capacity and capitalizing on the demand for affordable electric vehicles.
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc3 years ago
How Is Aluminum Made?
-
Electrification3 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification2 years ago
Life Cycle Emissions: EVs vs. Combustion Engine Vehicles
-
Misc2 years ago
Mapped: U.S. Mineral Production Value by State in 2022
-
Energy Shift2 years ago
Mapped: Biggest Sources of Electricity by State and Province