Electrification
Visualized: What is the Cost of Electric Vehicle Batteries?
What is the Cost of Electric Vehicle Batteries?
The cost of an electric vehicle (EV) battery pack can vary depending on composition and chemistry.
In this graphic, we use data from Benchmark Minerals Intelligence to showcase the different costs of battery cells on popular electric vehicles.
Size Matters
Some EV owners are taken by surprise when they discover the cost of replacing their batteries.
Depending on the brand and model of the vehicle, the cost of a new lithium-ion battery pack might be as high as $25,000:
Vehicle | Battery Type | Battery Capacity | Battery Cost | Total Cost of EV |
---|---|---|---|---|
2025 Cadillac Escalade IQ | Nickel Cobalt Manganese Aluminum (NCMA) | 200 kWh | $22,540 | $130,000 |
2023 Tesla Model S | Nickel Cobalt Aluminum (NCA) | 100 kWh | $12,030 | $88,490 |
2025 RAM 1500 REV | Nickel Cobalt Manganese (NCM) | 229 kWh | $25,853 | $81,000 |
2022 Rivian Delivery Van | Lithium Iron phosphate (LFP) | 135 kWh | $13,298 | $52,690 |
2023 Ford Mustang | Lithium Iron Phosphate (LFP) | 70 kWh | $6,895 | $43,179 |
2023 VW ID.4 | Nickel Cobalt Manganese (NCM622) | 62 kWh | $8,730 | $37,250 |
The price of an EV battery pack can be shaped by various factors such as raw material costs, production expenses, packaging complexities, and supply chain stability. One of the main factors is chemical composition.
Graphite is the standard material used for the anodes in most lithium-ion batteries.
However, it is the mineral composition of the cathode that usually changes. It includes lithium and other minerals such as nickel, manganese, cobalt, or iron. This specific composition is pivotal in establishing the battery’s capacity, power, safety, lifespan, cost, and overall performance.
Lithium nickel cobalt aluminum oxide (NCA) battery cells have an average price of $120.3 per kilowatt-hour (kWh), while lithium nickel cobalt manganese oxide (NCM) has a slightly lower price point at $112.7 per kWh. Both contain significant nickel proportions, increasing the battery’s energy density and allowing for longer range.
At a lower cost are lithium iron phosphate (LFP) batteries, which are cheaper to make than cobalt and nickel-based variants. LFP battery cells have an average price of $98.5 per kWh. However, they offer less specific energy and are more suitable for standard- or short-range EVs.
Which Battery Dominates the EV Market?
In 2021, the battery market was dominated by NCM batteries, with 58% of the market share, followed by LFP and NCA, holding 21% each.
Looking ahead to 2026, the market share of LFP is predicted to nearly double, reaching 38%.
NCM is anticipated to constitute 45% of the market and NCA is expected to decline to 7%.
Electrification
Charted: Battery Capacity by Country (2024-2030)
This graphic compares battery capacity by cathode type across major countries.

Charted: Battery Capacity by Country (2024-2030)
As the global energy transition accelerates, battery demand continues to soar—along with competition between battery chemistries.
According to the International Energy Agency, in 2024, electric vehicle sales rose by 25% to 17 million, pushing annual battery demand past 1 terawatt-hour (TWh)—a historic milestone.
This graphic, using exclusive data from Benchmark Mineral Intelligence (as of February 2025), compares battery capacity by cathode type across major countries. It focuses on the two dominant chemistries: Nickel Cobalt Manganese (NCM) and Lithium Iron Phosphate (LFP).
Understanding Cathode Chemistries
Batteries store and release energy through the movement of lithium ions. The cathode—a key electrode—determines a battery’s cost, range, and thermal performance.
NCM
- Offers higher energy density and better performance in cold climates, but is more expensive and has a shorter lifespan.
LFP
- Known for its lower cost and improved thermal stability, though it delivers a shorter driving range and adds weight.
As of now, LFP cathodes make up 40% of the EV market in terms of gigawatt-hours (GWh).
Beyond passenger vehicles, LFP batteries are widely used in systems that undergo frequent charging and discharging—like residential and grid-scale energy storage—where added weight isn’t a major concern. They’re also ideal for daily-use applications such as buses and delivery fleets.
Regional Market Trends
In China, LFP is already dominant, accounting for 64% of the market in 2024. By 2030, that figure is projected to grow to 76%, driven by a focus on affordability in the world’s largest EV market. Notably, over 70% of all EV batteries ever manufactured have been produced in China, contributing to deep manufacturing expertise.
Region/Country | Year | % NCM | % LFP | % Other |
---|---|---|---|---|
China | 2024 | 27% | 64% | 8% |
North America | 2024 | 71% | 7% | 22% |
Europe | 2024 | 69% | 8% | 24% |
South Korea | 2024 | 62% | 4% | 35% |
Japan | 2024 | 58% | 0% | 42% |
Outside of China, NCM remains the leading chemistry due to consumer demand for longer range and premium performance.
North America – NCM holds a 71% share in 2024, with a slight decline to 69% forecasted for 2030.
Europe – NCM’s share is expected to grow from 69% in 2024 to 71% by 2030.
South Korea and Japan – Both countries show similar trends, with NCM gaining share as LFP remains limited or absent.
Electrification
Top 20 Countries by Battery Storage Capacity
China holds about two-thirds of global BESS capacity.

Visualizing the Top 20 Countries by Battery Storage Capacity
Over the past three years, the Battery Energy Storage System (BESS) market has been the fastest-growing segment of global battery demand. These systems store electricity using batteries, helping stabilize the grid, store renewable energy, and provide backup power.
In 2024, the market grew by 52%, compared to 25% growth in the EV battery market. Among the top companies in the BESS market are technology giants such as Samsung, LG, BYD, Panasonic, and Tesla.
This graphic highlights the top 20 BESS markets by current and planned grid capacity in gigawatt hour (GWh), based on exclusive data from Rho Motion as of February 2025.
Chinese Dominance
As with the EV market, China currently dominates global BESS deployments, accounting for approximately two-thirds of installed capacity. However, other markets are expected to grow significantly in the coming years, driven by low-cost lithium-ion cells and the expansion of renewable energy capacity.
Currently, China has 215.5 GWh of installed capacity and an ambitious 505.6 GWh project pipeline. The U.S. follows with 82.1 GWh installed and 162.5 GWh planned.
Top BESS Markets | Installed 2024 (GWh) | 2027P |
---|---|---|
🇨🇳 China | 215.5 | 721.2 |
🇺🇸 USA | 82.1 | 244.6 |
🇬🇧 UK | 7.5 | 56.3 |
🇦🇺 Australia | 5.6 | 102.9 |
🇨🇱 Chile | 3.8 | 41.0 |
🇮🇹 Italy | 2.2 | 7.9 |
🇸🇦 Saudi Arabia | 1.3 | 32.4 |
🇿🇦 South Africa | 1.3 | 9.4 |
🇮🇪 Ireland | 1.6 | 2.5 |
🇵🇭 Philippines | 1.0 | 6.1 |
🇯🇵 Japan | 1.0 | 5.0 |
🇩🇪 Germany | 1.0 | 6.2 |
🇰🇷 South Korea | 1.1 | 1.3 |
🇮🇱 Israel | 0.8 | 4.6 |
🇫🇷 France | 0.6 | 1.8 |
🇧🇪 Belgium | 0.7 | 5.3 |
🇺🇿 Uzbekistan | 0.6 | 5.9 |
🇸🇪 Sweden | 0.6 | 1.5 |
🇮🇳 India | 0.5 | 4.3 |
🇨🇦 Canada | 0.3 | 18.3 |
Canada is projected to be the fastest-growing market through 2027, with its cumulative capacity hitting 18.3 GWh—a significant increase from its current 0.3 GWh capacity.
Countries such as Australia (97.3 GWh pipeline), Saudi Arabia (31.1 GWh), and Chile (37.2 GWh) have relatively small current installations but plan substantial expansions. Within Europe, the UK leads with 7.5 GWh of installed capacity and 48.7 GWh in the pipeline, while Italy, Germany, France, and Belgium show steady but more modest growth.
Despite being technological leaders, Japan (4 GWh pipeline) and South Korea (0.3 GWh) have relatively low planned BESS expansions.
According to Rho Motion, China will remain the dominant player in 2027, but its share of the total market is expected to decline to just over 50% based on the current project pipeline.
While the BESS market is expanding, challenges remain, including grid connection bottlenecks and the development of revenue streams in emerging markets.
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Electrification3 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification2 years ago
Life Cycle Emissions: EVs vs. Combustion Engine Vehicles
-
Misc2 years ago
Mapped: U.S. Mineral Production Value by State in 2022
-
Energy Shift2 years ago
Mapped: Biggest Sources of Electricity by State and Province
-
Electrification2 years ago
Visualizing Global EV Production in 2022, by Brand