Electrification
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
The Six Types of Lithium-ion Batteries: A Visual Comparison
Lithium-ion batteries are at the center of the clean energy transition as the key technology powering electric vehicles (EVs) and energy storage systems.
However, there are many types of lithium-ion batteries, each with pros and cons.
The above infographic shows the tradeoffs between the six major lithium-ion cathode technologies based on research by Miao et al. and Battery University. This is the first of two infographics in our Battery Technology Series.
Understanding the Six Main Lithium-ion Technologies
Each of the six different types of lithium-ion batteries has a different chemical composition.
The anodes of most lithium-ion batteries are made from graphite. Typically, the mineral composition of the cathode is what changes, making the difference between battery chemistries.
The cathode material typically contains lithium along with other minerals including nickel, manganese, cobalt, or iron. This composition ultimately determines the battery’s capacity, power, performance, cost, safety, and lifespan.
With that in mind, let’s take a look at the six major lithium-ion cathode technologies.
#1: Lithium Nickel Manganese Cobalt Oxide (NMC)
NMC cathodes typically contain large proportions of nickel, which increases the battery’s energy density and allows for longer ranges in EVs. However, high nickel content can make the battery unstable, which is why manganese and cobalt are used to improve thermal stability and safety. Several NMC combinations have seen commercial success, including NMC811 (composed of 80% nickel, 10% manganese, and 10% cobalt), NMC532, and NMC622.
#2: Lithium Nickel Cobalt Aluminum Oxide (NCA)
NCA batteries share nickel-based advantages with NMC, including high energy density and specific power. Instead of manganese, NCA uses aluminum to increase stability. However, NCA cathodes are relatively less safe than other Li-ion technologies, more expensive, and typically only used in high-performance EV models.
#3: Lithium Iron Phosphate (LFP)
Due to their use of iron and phosphate instead of nickel and cobalt, LFP batteries are cheaper to make than nickel-based variants. However, they offer lesser specific energy and are more suitable for standard- or short-range EVs. Additionally, LFP is considered one of the safest chemistries and has a long lifespan, enabling its use in energy storage systems.
#4: Lithium Cobalt Oxide (LCO)
Although LCO batteries are highly energy-dense, their drawbacks include a relatively short lifespan, low thermal stability, and limited specific power. Therefore, these batteries are a popular choice for low-load applications like smartphones and laptops, where they can deliver relatively smaller amounts of power for long durations.
#5: Lithium Manganese Oxide (LMO)
Also known as manganese spinel batteries, LMO batteries offer enhanced safety and fast charging and discharging capabilities. In EVs, LMO cathode material is often blended with NMC, where the LMO part provides a high current upon acceleration, and NMC enables longer driving ranges.
#6: Lithium Titanate (LTO)
Unlike the other chemistries above, where the cathode composition makes the difference, LTO batteries use a unique anode surface made of lithium and titanium oxides. These batteries exhibit excellent safety and performance under extreme temperatures but have low capacity and are relatively expensive, limiting their use at scale.
Which Batteries Dominate the EV Market?
Now that we know about the six main types of lithium-ion batteries, which of these dominate the EV market, and how will that change in the future?
To find out, stay tuned for Part 2 of the Battery Technology Series, where we’ll look at the top EV battery chemistries by forecasted market share from 2021 through 2026.
Electrification
How Clean is the Nickel and Lithium in a Battery?
This graphic from Wood Mackenzie shows how nickel and lithium mining can significantly impact the environment, depending on the processes used.

How Clean is the Nickel and Lithium in a Battery?
The production of lithium (Li) and nickel (Ni), two key raw materials for batteries, can produce vastly different emissions profiles.
This graphic from Wood Mackenzie shows how nickel and lithium mining can significantly impact the environment, depending on the processes used for extraction.
Nickel Emissions Per Extraction Process
Nickel is a crucial metal in modern infrastructure and technology, with major uses in stainless steel and alloys. Nickel’s electrical conductivity also makes it ideal for facilitating current flow within battery cells.
Today, there are two major methods of nickel mining:
-
From laterite deposits, which are predominantly found in tropical regions. This involves open-pit mining, where large amounts of soil and overburden need to be removed to access the nickel-rich ore.
-
From sulphide ores, which involves underground or open-pit mining of ore deposits containing nickel sulphide minerals.
Although nickel laterites make up 70% of the world’s nickel reserves, magmatic sulphide deposits produced 60% of the world’s nickel over the last 60 years.
Compared to laterite extraction, sulphide mining typically emits fewer tonnes of CO2 per tonne of nickel equivalent as it involves less soil disturbance and has a smaller physical footprint:
Ore Type | Process | Product | Tonnes of CO2 per tonne of Ni equivalent |
---|---|---|---|
Sulphides | Electric / Flash Smelting | Refined Ni / Matte | 6 |
Laterite | High Pressure Acid Leach (HPAL) | Refined Ni / Mixed Sulpide Precipitate / Mixed Hydroxide Precipitate | 13.7 |
Laterite | Blast Furnace / RKEF | Nickel Pig Iron / Matte | 45.1 |
Nickel extraction from laterites can impose significant environmental impacts, such as deforestation, habitat destruction, and soil erosion.
Additionally, laterite ores often contain high levels of moisture, requiring energy-intensive drying processes to prepare them for further extraction. After extraction, the smelting of laterites requires a significant amount of energy, which is largely sourced from fossil fuels.
Although sulphide mining is cleaner, it poses other environmental challenges. The extraction and processing of sulphide ores can release sulphur compounds and heavy metals into the environment, potentially leading to acid mine drainage and contamination of water sources if not managed properly.
In addition, nickel sulphides are typically more expensive to mine due to their hard rock nature.
Lithium Emissions Per Extraction Process
Lithium is the major ingredient in rechargeable batteries found in phones, hybrid cars, electric bikes, and grid-scale storage systems.
Today, there are two major methods of lithium extraction:
-
From brine, pumping lithium-rich brine from underground aquifers into evaporation ponds, where solar energy evaporates the water and concentrates the lithium content. The concentrated brine is then further processed to extract lithium carbonate or hydroxide.
-
Hard rock mining, or extracting lithium from mineral ores (primarily spodumene) found in pegmatite deposits. Australia, the world’s leading producer of lithium (46.9%), extracts lithium directly from hard rock.
Brine extraction is typically employed in countries with salt flats, such as Chile, Argentina, and China. It is generally considered a lower-cost method, but it can have environmental impacts such as water usage, potential contamination of local water sources, and alteration of ecosystems.
The process, however, emits fewer tonnes of CO2 per tonne of lithium-carbonate-equivalent (LCE) than mining:
Source | Ore Type | Process | Tonnes of CO2 per tonne of LCE |
---|---|---|---|
Mineral | Spodumene | Mine | 9 |
Mineral | Petalite, lepidolite and others | Mine | 8 |
Brine | N/A | Extraction/Evaporation | 3 |
Mining involves drilling, blasting, and crushing the ore, followed by flotation to separate lithium-bearing minerals from other minerals. This type of extraction can have environmental impacts such as land disturbance, energy consumption, and the generation of waste rock and tailings.
Sustainable Production of Lithium and Nickel
Environmentally responsible practices in the extraction and processing of nickel and lithium are essential to ensure the sustainability of the battery supply chain.
This includes implementing stringent environmental regulations, promoting energy efficiency, reducing water consumption, and exploring cleaner technologies. Continued research and development efforts focused on improving extraction methods and minimizing environmental impacts are crucial.
Sign up to Wood Mackenzie’s Inside Track to learn more about the impact of an accelerated energy transition on mining and metals.
Electrification
Life Cycle Emissions: EVs vs. Combustion Engine Vehicles
We look at carbon emissions of electric, hybrid, and combustion engine vehicles through an analysis of their life cycle emissions.

Life Cycle Emissions: EVs vs. Combustion Engine Vehicles
According to the International Energy Agency, the transportation sector is more reliant on fossil fuels than any other sector in the economy. In 2021, it accounted for 37% of all CO2 emissions from end‐use sectors.
To gain insights into how different vehicle types contribute to these emissions, the above graphic visualizes the life cycle emissions of battery electric, hybrid, and internal combustion engine (ICE) vehicles using Polestar and Rivian’s Pathway Report.
Production to Disposal: Emissions at Each Stage
Life cycle emissions are the total amount of greenhouse gases emitted throughout a product’s existence, including its production, use, and disposal.
To compare these emissions effectively, a standardized unit called metric tons of CO2 equivalent (tCO2e) is used, which accounts for different types of greenhouse gases and their global warming potential.
Here is an overview of the 2021 life cycle emissions of medium-sized electric, hybrid and ICE vehicles in each stage of their life cycles, using tCO2e. These numbers consider a use phase of 16 years and a distance of 240,000 km.
Battery electric vehicle | Hybrid electric vehicle | Internal combustion engine vehicle | ||
---|---|---|---|---|
Production emissions (tCO2e) | Battery manufacturing | 5 | 1 | 0 |
Vehicle manufacturing | 9 | 9 | 10 | |
Use phase emissions (tCO2e) | Fuel/electricity production | 26 | 12 | 13 |
Tailpipe emissions | 0 | 24 | 32 | |
Maintenance | 1 | 2 | 2 | |
Post consumer emissions (tCO2e) | End-of-life | -2 | -1 | -1 |
TOTAL | 39 tCO2e | 47 tCO2e | 55 tCO2e |
While it may not be surprising that battery electric vehicles (BEVs) have the lowest life cycle emissions of the three vehicle segments, we can also take some other insights from the data that may not be as obvious at first.
- The production emissions for BEVs are approximately 40% higher than those of hybrid and ICE vehicles. According to a McKinsey & Company study, this high emission intensity can be attributed to the extraction and refining of raw materials like lithium, cobalt, and nickel that are needed for batteries, as well as the energy-intensive manufacturing process of BEVs.
- Electricity production is by far the most emission-intensive stage in a BEVs life cycle. Decarbonizing the electricity sector by implementing renewable and nuclear energy sources can significantly reduce these vehicles’ use phase emissions.
- By recycling materials and components in their end-of-life stages, all vehicle segments can offset a portion of their earlier life cycle emissions.
Accelerating the Transition to Electric Mobility
As we move toward a carbon-neutral economy, battery electric vehicles can play an important role in reducing global CO2 emissions.
Despite their lack of tailpipe emissions, however, it’s good to note that many stages of a BEV’s life cycle are still quite emission-intensive, specifically when it comes to manufacturing and electricity production.
Advancing the sustainability of battery production and fostering the adoption of clean energy sources can, therefore, aid in lowering the emissions of BEVs even further, leading to increased environmental stewardship in the transportation sector.
-
Electrification2 years ago
Ranked: The Top 10 EV Battery Manufacturers
-
Real Assets3 years ago
Visualizing China’s Dominance in Rare Earth Metals
-
Real Assets2 years ago
The World’s Top 10 Gold Mining Companies
-
Electrification1 year ago
The Key Minerals in an EV Battery
-
Misc2 years ago
All the Metals We Mined in One Visualization
-
Misc2 years ago
All the World’s Metals and Minerals in One Visualization
-
Real Assets3 years ago
What is a Commodity Super Cycle?
-
Real Assets3 years ago
How the World’s Top Gold Mining Stocks Performed in 2020