Connect with us

Energy Shift

Ranked: The Most Carbon-Intensive Sectors in the World

Published

on

Ranked: The Most Carbon-Intensive Sectors in the World

Ranked: The Most Carbon-Intensive Sectors in the World

Ever wonder which sectors contribute the most to CO2 emissions around the world?

In this graphic, we explore the answers to that question by comparing average Scope 1 emission intensities by sector, according to an analysis done by S&P Global Inc.

Defining Scope 1 Emissions

Before diving into the data, it may be useful to understand what Scope 1 emissions entail.

Scope 1 emissions are direct greenhouse gas emissions from sources that are owned or controlled by a company, such as their facilities and vehicles.

Source: U.S. Environmental Protection Agency

Scope 1 emissions can do a good job of highlighting a company’s environmental footprint because they represent the direct emissions related to manufacturing or creating a company’s products, whether they are tangible goods, digital software, or services.

Scope 2 and 3 emissions, on the other hand, encompass the indirect emissions associated with a company’s activities, including those from a company’s purchased electricity, leased assets, or investments.

Ranking the Carbon Giants

According to S&P Global’s analysis of 2019-2020 average emissions intensity by sector, utilities is the most carbon-intensive sector in the world, emitting a staggering 2,634 tonnes of CO2 per $1 million of revenue.

Materials and energy sectors follow behind, with 918 tonnes and 571 tonnes of CO2 emitted, respectively.

SectorSector ExplanationScope 1 CO2 emissions per $1M of revenue, 2019-2020
UtilitiesElectric, gas, and water utilities and independent producers2,634 tonnes
MaterialsChemicals, construction materials, packaging, metals, and mining918 tonnes
EnergyOil and gas exploration/production and energy equipment571 tonnes
IndustrialsCapital goods, commercial services, and transportation194 tonnes
Consumer staplesFood, household goods, and personal products90 tonnes
Consumer discretionaryAutomobiles, consumer durables, apparel, and retailing33 tonnes
Real estateReal estate and real estate management31 tonnes
Information technologySoftware, technology hardware, and semiconductors24 tonnes
FinancialsBanks, insurance, and diversified financials19 tonnes
Communication servicesTelecommunication, media, and entertainment9 tonnes
Health careHealth care equipment, pharmaceuticals, biotechnology, and life sciences7 tonnes

S&P Global also reveals some interesting insights when it comes to various industries within the materials sector, including:

  • Cement manufacturing exhibits an extremely high level of Scope 1 emissions, emitting more than double the emissions from the utilities sector (5,415 tonnes of CO2 per $1M of revenue)
  • Aluminum and steel production are also quite emission-intensive, emitting 1,421 and 1,390 tonnes respectively in 2019-2020
  • Relatively lower-emission materials such as gold, glass, metals and paper products bring down the average emissions of the materials sector

Given these trends, a closer look at emission-intensive industries and sectors is necessary for our urgent need to decarbonize the global economy.

Click for Comments

Energy Shift

Visualizing the Decline of Copper Usage in EVs

Copper content in EVs has steadily decreased over the past decade, even as overall copper demand rises due to the increasing adoption of EVs.

Published

on

The total copper per vehicle is projected to decrease by 38 kg between 2015 and 2030.

Visualizing the Decline of Copper Usage in EVs

Copper intensity in passenger battery electric vehicles (BEVs) has steadily decreased over the last decade, driven by numerous technological advancements alongside increasing usage of alternative materials such as aluminum.

In this graphic, we visualize the evolution of copper demand in various subcomponents of passenger battery electric vehicles (BEVs) from 2015 to 2030F, along with total global copper demand driven by EVs for the same period. This data comes exclusively from Benchmark Mineral Intelligence.

Copper Intensity Per Car

According to Benchmark Mineral Intelligence, the copper intensity per vehicle is expected to decline by almost 38 kg, from 99 kg in 2015 to 62 kg by 2030.

YearWiringMotorCopper FoilBusbarAuxiliary MotorCharging CableTotal
201530841.2613.232.873.9699.32
201629838.6813.372.853.9295.82
201728732.6712.722.843.9087.13
201827726.3911.872.823.8878.96
201926728.0010.852.783.8278.45
202025724.7110.242.733.7673.44
202124625.279.292.693.7070.95
202223728.448.562.653.6473.29
202322729.878.122.613.5873.18
2024F21727.737.672.563.5269.48
2025F20727.797.192.522.5167.01
2026F20727.786.632.483.4167.30
2027F19827.556.152.443.3566.49
2028F18826.775.702.403.3064.17
2029F18826.175.512.393.2863.35
2030F17825.635.442.373.2661.70

One of the most significant factors driving this decline is thrifting, where engineers and manufacturers continuously improve the efficiency and performance of various components, leading to reduced copper usage. A key example of this is in battery production, where the thickness of copper foil used in battery anodes has significantly decreased.

In 2015, Benchmark estimated copper foil usage was just over 41 kg per vehicle (at an average thickness of 10 microns), but by 2030, it is projected to fall to 26 kg as manufacturers continue to adopt thinner foils.

Similarly, automotive wiring systems have become more localized, with advances in high-voltage wiring and modular integration allowing for reduced copper content in wiring harnesses.

Copper used in wiring has dropped from 30 kg per vehicle in 2015 to a projected 17 kg by 2030.

Newer, more compact power electronics and improved thermal management in motors and charging cables have also contributed to the reduction in copper usage.

Substitution has also played a role, with alternatives such as aluminum increasingly being used in components like busbars, wiring harnesses, and charging cable applications.

Aluminum’s lighter weight and lower cost have made it a practical alternative to copper in specific applications, though the additional space required to achieve the same level of conductivity can limit its use in certain cases.

Benchmark estimates that copper used in automotive wire harnesses has declined by 30% between 2015 and 2024.

The Road Ahead

Despite reductions in per-vehicle copper usage, the outlook for copper demand from the EV sector remains strong due to the sector’s growth.

YearEV Sector Copper Demand (tonnes)
201556K
201682K
2017111K
2018166K
2019179K
2020237K
2021447K
2022696K
2023902K
2024F1.0M
2025F1.2M
2026F1.5M
2027F1.7M
2028F2.0M
2029F2.2M
2030F2.5M

Benchmark’s analysis indicates that by 2030, copper demand driven by EVs alone will exceed 2.5 million tonnes, securing copper’s critical role in the transition to a low-carbon future.

Continue Reading

Energy Shift

Visualizing the Rise in Global Coal Consumption

China remains the largest coal consumer, making up 56% of the global total.

Published

on

In this graphic, we show global coal consumption by region from 1965 to 2020.

Visualizing the Rise in Global Coal Consumption

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Despite efforts to decarbonize the economy, global coal consumption surpassed 164 exajoules for the first time in 2023. The fossil fuel still accounts for 26% of the world’s total energy consumption.

In this graphic, we show global coal consumption by region from 1965 to 2023, based on data from the Energy Institute.

China Leads in Coal Consumption

China is by far the largest consumer of coal, accounting for 56% of the global total, with 91.94 exajoules in 2023.

It is followed by India, with 21.98 exajoules, and the U.S., with 8.20 exajoules. In 2023, India exceeded the combined consumption of Europe and North America for the first time.

Regionally, North America and Europe have seen a decline in coal consumption since the 1990s, while the Asia-Pacific region experienced a surge in demand during the same period.

YearAsia Pacific (Exajoules)North AmericaEuropeRest of the WorldTotal World
2013114.1419.4815.8611.47160.95
2014115.7419.3914.8811.68161.62
2015115.0016.8914.2411.11157.25
2016113.2115.5513.7411.35153.85
2017115.6715.3013.2911.23155.50
2018119.0514.5012.9811.34157.87
2019121.9412.4911.0611.45156.95
2020121.919.979.5710.82152.27
2021127.7511.2410.4411.12160.56
2022129.8010.5410.0211.18161.53
2023135.708.838.3911.11164.03

Coal Production on the Rise

In addition to consumption, global coal production also reached its highest-ever level in 2023, at 179 exajoules.

The Asia-Pacific region accounted for nearly 80% of global output, with activity concentrated in Australia, China, India, and Indonesia.

China alone was responsible for just over half of total global production.

Learn More on the Voronoi App 

If you want to learn more about fossil fuel consumption, check out this graphic showing the top 12 countries by fossil fuel consumption in 2023.

Continue Reading

Subscribe

Popular