Connect with us

Electrification

Life Cycle Emissions: EVs vs. Combustion Engine Vehicles

Published

on

Life Cycle Emissions: EVs vs. Combustion Engine Vehicles

Life Cycle Emissions: EVs vs. Combustion Engine Vehicles

According to the International Energy Agency, the transportation sector is more reliant on fossil fuels than any other sector in the economy. In 2021, it accounted for 37% of all CO2 emissions from end‐use sectors.

To gain insights into how different vehicle types contribute to these emissions, the above graphic visualizes the life cycle emissions of battery electric, hybrid, and internal combustion engine (ICE) vehicles using Polestar and Rivian’s Pathway Report.

Production to Disposal: Emissions at Each Stage

Life cycle emissions are the total amount of greenhouse gases emitted throughout a product’s existence, including its production, use, and disposal.

To compare these emissions effectively, a standardized unit called metric tons of CO2 equivalent (tCO2e) is used, which accounts for different types of greenhouse gases and their global warming potential.

Here is an overview of the 2021 life cycle emissions of medium-sized electric, hybrid and ICE vehicles in each stage of their life cycles, using tCO2e. These numbers consider a use phase of 16 years and a distance of 240,000 km.

Battery electric vehicle Hybrid electric vehicleInternal combustion engine vehicle
Production emissions (tCO2e)Battery manufacturing510
Vehicle manufacturing 9910
Use phase emissions (tCO2e)Fuel/electricity production261213
Tailpipe emissions 02432
Maintenance 122
Post consumer emissions (tCO2e)End-of-life -2-1-1
TOTAL 39 tCO2e47 tCO2e55 tCO2e

While it may not be surprising that battery electric vehicles (BEVs) have the lowest life cycle emissions of the three vehicle segments, we can also take some other insights from the data that may not be as obvious at first.

  1. The production emissions for BEVs are approximately 40% higher than those of hybrid and ICE vehicles. According to a McKinsey & Company study, this high emission intensity can be attributed to the extraction and refining of raw materials like lithium, cobalt, and nickel that are needed for batteries, as well as the energy-intensive manufacturing process of BEVs.
  2. Electricity production is by far the most emission-intensive stage in a BEVs life cycle. Decarbonizing the electricity sector by implementing renewable and nuclear energy sources can significantly reduce these vehicles’ use phase emissions.
  3. By recycling materials and components in their end-of-life stages, all vehicle segments can offset a portion of their earlier life cycle emissions.

Accelerating the Transition to Electric Mobility

As we move toward a carbon-neutral economy, battery electric vehicles can play an important role in reducing global CO2 emissions.

Despite their lack of tailpipe emissions, however, it’s good to note that many stages of a BEV’s life cycle are still quite emission-intensive, specifically when it comes to manufacturing and electricity production.

Advancing the sustainability of battery production and fostering the adoption of clean energy sources can, therefore, aid in lowering the emissions of BEVs even further, leading to increased environmental stewardship in the transportation sector.

Click for Comments

Electrification

Visualizing the Supply Deficit of Battery Minerals (2024-2034P)

A surplus of key metals is expected to shift to a major deficit within a decade.

Published

on

This graphic represents how key minerals for batteries will shift from a surplus in 2024 to a deficit in 2034.

Visualizing the Supply Deficit of Battery Minerals (2024-2034P)

The world currently produces a surplus of key battery minerals, but this is projected to shift to a significant deficit over the next 10 years.

This graphic illustrates this change, driven primarily by growing battery demand. The data comes exclusively from Benchmark Mineral Intelligence, as of November 2024.

Minerals in a Lithium-Ion Battery Cathode

Minerals make up the bulk of materials used to produce parts within the cell, ensuring the flow of electrical current:

  • Lithium: Acts as the primary charge carrier, enabling energy storage and transfer within the battery.
  • Cobalt: Stabilizes the cathode structure, improving battery lifespan and performance.
  • Nickel: Boosts energy density, allowing batteries to store more energy.
  • Manganese: Enhances thermal stability and safety, reducing overheating risks.

The cells in an average battery with a 60 kilowatt-hour (kWh) capacity—the same size used in a Chevy Bolt—contain roughly 185 kilograms of minerals.

Battery Demand Forecast

Due to the growing demand for these materials, their production and mining have increased exponentially in recent years, led by China. In this scenario, all the metals shown in the graphic currently experience a surplus.

In the long term, however, with the greater adoption of batteries and other renewable energy technologies, projections indicate that all these minerals will enter a deficit.

For example, lithium demand is expected to more than triple by 2034, resulting in a projected deficit of 572,000 tonnes of lithium carbonate equivalent (LCE). According to Benchmark analysis, the lithium industry would need over $40 billion in investment to meet demand by 2030.

MetricLithium (in tonnes LCE)Nickel (in tonnes)Cobalt (in tonnes)Manganese (in tonnes)
2024 Demand1,103,0003,440,000230,000119,000
2024 Surplus88,000117,00024,00011,000
2034 Demand3,758,0006,082,000468,000650,000
2034 Deficit-572,000-839,000-91,000-307,000

Nickel demand, on the other hand, is expected to almost double, leading to a deficit of 839,000 tonnes by 2034. The surge in demand is attributed primarily to the rise of mid- and high-performance electric vehicles (EVs) in Western markets.

Continue Reading

Electrification

Visualizing the EU’s Critical Minerals Gap by 2030

This graphic underscores the scale of the challenge the bloc faces in strengthening its critical mineral supply by 2030.

Published

on

This graphic underscores the scale of the challenge the EU faces in strengthening its critical mineral supply chains under the Critical Raw Material Act.

Visualizing EU’s Critical Minerals Gap by 2030

The European Union’s Critical Raw Material Act sets out several ambitious goals to enhance the resilience of its critical mineral supply chains.

The Act includes non-binding targets for the EU to build sufficient mining capacity so that mines within the bloc can meet 10% of its critical mineral demand.

Additionally, the Act establishes a goal for 40% of demand to be met by processing within the bloc, and 25% through recycling.

Several months after the Act’s passage in May 2024, this graphic highlights the scale of the challenge the EU aims to overcome. This data comes exclusively from Benchmark Mineral Intelligence, as of July 2024. The graphic excludes synthetic graphite.

Securing Europe’s Supply of Critical Materials

With the exception of nickel mining, none of the battery minerals deemed strategic by the EU are on track to meet these goals.

Graphite, the largest mineral component used in batteries, is of particular concern. There is no EU-mined supply of manganese ore or coke, the precursor to synthetic graphite.

By 2030, the European Union is expected to supply 16,000 tonnes of flake graphite locally, compared to the 45,000 tonnes it would need to meet the 10% mining target.

Metal 2030 Demand (tonnes)Mining (F)Processing (F)Recycling (F)Mining Target Processing Target Recycling Target
Lithium459K29K46K25K46K184K115K
Nickel403K42K123K25K40K161K101K
Cobalt94K1K19K6K9K37K23K
Manganese147K0K21K5K15K59K37K
Flake Graphite453K16K17KN/A45K86KN/A

The EU is also expected to mine 29,000 tonnes of LCE (lithium carbonate equivalent) compared to the 46,000 tonnes needed to meet the 10% target.

In terms of mineral processing, the bloc is expected to process 25% of its lithium requirements, 76% of nickel, 51% of cobalt, 36% of manganese, and 20% of flake graphite.

The EU is expected to recycle only 22% of its lithium needs, 25% of nickel, 26% of cobalt, and 14% of manganese. Graphite, meanwhile, is not widely recycled on a commercial scale.

Continue Reading

Subscribe

Popular