Connect with us

Electrification

Visualizing 10 Years of Global EV Sales by Country

Published

on

ev sales by country

10 Years of EV Sales by Country

In 2011, around 55,000 electric vehicles (EVs) were sold around the world. 10 years later in 2021, that figure had grown close to 7 million vehicles.

With many countries getting plugged into electrification, the global EV market has seen exponential growth over the last decade. Using data from the International Energy Agency (IEA), this infographic shows the explosion in global EV sales since 2011, highlighting the countries that have grown into the biggest EV markets.

The Early EV Days

From 2011 to 2015, global EV sales grew at an average annual rate of 89%, with roughly one-third of global sales occurring in the U.S. alone.

YearTotal EV SalesCAGR
201155,414-
2012132,013138.2%
2013220,34366.9%
2014361,15763.9%
2015679,23588.0%
Total sales / Avg growth1,448,16289.3%

In 2014, the U.S. was the largest EV market followed by China, the Netherlands, Norway, and France. But things changed in 2015, when China’s EV sales grew by 238% relative to 2014, propelling it to the top spot.

China’s growth had been years in the making, with the government offering generous subsidies for electrified cars, in addition to incentives and policies that encouraged production. In 2016, Chinese consumers bought more EVs than the rest of the world combined—and the country hasn’t looked back, accounting for over half of global sales in 2021.

EV Sales by Country in 2021

After remaining fairly flat in 2019, global EV sales grew by 38% in 2020, and then more than doubled in 2021. China was the driver of the growth—the country sold more EVs in 2021 than the rest of the world combined in 2020.

Country2021 EV Sales% of Total
China 🇨🇳3,519,05451.7%
U.S. 🇺🇸631,1529.3%
Germany 🇩🇪695,65710.2%
France 🇫🇷322,0434.7%
UK 🇬🇧326,9904.8%
Norway 🇳🇴153,6992.3%
Italy 🇮🇹141,6152.1%
Sweden 🇸🇪138,7712.0%
South Korea 🇰🇷119,4021.8%
Netherlands 🇳🇱97,2821.4%
Rest of Europe 🇪🇺 469,9306.9%
Rest of the World 🌍 313,1294.6%
Total6,809,322100.0%

China has nearly 300 EV models available for purchase, more than any other country, and it’s also home to four of the world’s 10 largest battery manufacturers. Moreover, the median price of electric cars in China is just 10% more than conventional cars, compared to 45-50% on average in other major markets.

Germany, Europe’s biggest auto market, sold nearly 700,000 EVs in 2021, up 72% from 2020. The country hosts some of the biggest EV factories in Europe, with Tesla, Volkswagen, and Chinese battery giant CATL either planning or operating ‘gigafactories’ there. Overall, sales in Europe increased by 65% in 2021, as evidenced by the seven European countries in the above list.

The U.S. also made a comeback after a two-year drop, with EV sales more than doubling in 2021. The growth was supported by a 24% increase in EV model availability, and also by an increase in production of Tesla models, which accounted for half of U.S. EV sales.

Tesla’s Dominance in the U.S.

Tesla is the world’s most renowned electric car company and its dominance in the U.S. is unmatched.

Between 2011 and 2019, Tesla accounted for 40% of all EVs sold in the United States. Furthermore, Tesla cars have been the top-selling EV models in the U.S. in every year since 2015.

EV Model2021 Sales% of 2021 U.S. EV Sales
Tesla Model Y*185,99429.5%
Tesla Model 3*147,46023.4%
Ford Mustang Mach-E27,1404.3%
Chevy Bolt EV/EUV24,8283.9%
Volkswagen ID.416,7422.7%
Tesla Model S*15,5452.5%
Nissan Leaf14,2392.3%
Porsche Taycan9,4191.5%
Tesla Model X*7,9851.3%
Audi e-tron7,4291.2%

*Estimates
Share of total sales calculated using total U.S. EV sales of 631,152 units, based on data from the IEA.
Source: Cleantechnica

Tesla accounted for over 50% of EV sales in the U.S. in 2021 with the Model Y—launched in 2019—taking the top spot. Furthermore, the Model Y remained the bestselling EV in the first quarter of 2022, with Tesla taking up a massive 75% of the EV market share.

Despite Tesla’s popularity, it could face a challenge as other automakers roll out new models and expand EV production. For example, General Motors aims to make 20 EV models available by 2025, and Ford expects to produce at least 2 million EVs annually by 2026. This increase in competition from incumbents and new entrants could eat away at Tesla’s market share in the coming years.

Click for Comments

Electrification

How EV Adoption Will Impact Oil Consumption (2015-2025P)

How much oil is saved by adding electric vehicles into the mix? We look at data from 2015 to 2025P for different types of EVs.

Published

on

The EV Impact on Oil Consumption

As the world moves towards the electrification of the transportation sector, demand for oil will be replaced by demand for electricity.

To highlight the EV impact on oil consumption, the above infographic shows how much oil has been and will be saved every day between 2015 and 2025 by various types of electric vehicles, according to BloombergNEF.

How Much Oil Do Electric Vehicles Save?

A standard combustion engine passenger vehicle in the U.S. uses about 10 barrels of oil equivalent (BOE) per year. A motorcycle uses 1, a Class 8 truck about 244, and a bus uses more than 276 BOEs per year.

When these vehicles become electrified, the oil their combustion engine counterparts would have used is no longer needed, displacing oil demand with electricity.

Since 2015, two and three-wheeled vehicles, such as mopeds, scooters, and motorcycles, have accounted for most of the oil saved from EVs on a global scale. With a wide adoption in Asia specifically, these vehicles displaced the demand for almost 675,000 barrels of oil per day in 2015. By 2021, this number had quickly grown to 1 million barrels per day.

Let’s take a look at the daily displacement of oil demand by EV segment.

Number of barrels saved per day, 2015Number of barrels saved per day, 2025P
Electric Passenger Vehicles8,600 886,700
Electric Commercial Vehicles0145,000
Electric Buses 43,100333,800
Electric Two & Three-Wheelers674,3001,100,000
Total Oil Barrels Per Day726,0002,465,500

Today, while work is being done in the commercial vehicle segment, very few large trucks on the road are electric—however, this is expected to change by 2025.

Meanwile, electric passenger vehicles have shown the biggest growth in adoption since 2015.

In 2022, the electric car market experienced exponential growth, with sales exceeding 10 million cars. The market is expected to continue its strong growth throughout 2023 and beyond, eventually coming to save a predicted 886,700 barrels of oil per day in 2025.

From Gas to Electric

While the world shifts from fossil fuels to electricity, BloombergNEF predicts that the decline in oil demand does not necessarily equate to a drop in oil prices.

In the event that investments in new supply capacity decrease more rapidly than demand, oil prices could still remain unstable and high.

The shift toward electrification, however, will likely have other implications.

While most of us associate electric vehicles with lower emissions, it’s good to consider that they are only as sustainable as the electricity used to charge them. The shift toward electrification, then, presents an incredible opportunity to meet the growing demand for electricity with clean energy sources, such as wind, solar and nuclear power.

The shift away from fossil fuels in road transport will also require expanded infrastructure. EV charging stations, expanded transmission capacity, and battery storage will likely all be key to supporting the wide-scale transition from gas to electricity.

Continue Reading

Electrification

Graphite: An Essential Material in the Battery Supply Chain

Graphite represents almost 50% of the materials needed for batteries by weight, no matter the chemistry.

Published

on

Graphite: An Essential Material in the Battery Supply Chain

The demand for lithium-ion (Li-ion) batteries has skyrocketed in recent years due to the increasing popularity of electric vehicles (EVs) and renewable energy storage systems.

What many people don’t realize, however, is that the key component of these batteries is not just lithium, but also graphite.

Graphite represents almost 50% of the materials needed for batteries by weight, regardless of the chemistry. In Li-ion batteries specifically, graphite makes up the anode, which is the negative electrode responsible for storing and releasing electrons during the charging and discharging process.

To explore just how essential graphite is in the battery supply chain, this infographic sponsored by Northern Graphite dives into how the anode of a Li-ion battery is made.

What is Graphite?

Graphite is a naturally occurring form of carbon that is used in a wide range of industrial applications, including in synthetic diamonds, EV Li-ion batteries, pencils, lubricants, and semiconductor substrates.

It is stable, high-performing, and reusable. While it comes in many different grades and forms, battery-grade graphite falls into one of two classes: natural or synthetic.

Natural graphite is produced by mining naturally occurring mineral deposits. This method produces only one to two kilograms of CO2 emissions per kilogram of graphite.

Synthetic graphite, on the other hand, is produced by the treatment of petroleum coke and coal tar, producing nearly 5 kg of CO2 per kilogram of graphite along with other harmful emissions such as sulfur oxide and nitrogen oxide.

A Closer Look: How Graphite Turns into a Li-ion Battery Anode

The battery anode production process is composed of four overarching steps. These are:

  1. Mining
  2. Shaping
  3. Purifying
  4. Coating

Each of these stages results in various forms of graphite with different end-uses.

For instance, the micronized graphite that results from the shaping process can be used in plastic additives. On the other hand, only coated spherical purified graphite that went through all four of the above stages can be used in EV Li-ion batteries.

The Graphite Supply Chain

Despite its growing use in the energy transition all around the world, around 70% of the world’s graphite currently comes from China.

With scarce alternatives to be used in batteries, however, achieving supply security in North America is crucial, and it is using more environmentally friendly approaches to graphite processing.

With a lower environmental footprint and lower production costs, natural graphite serves as the anode material for a greener future.

Click here to learn more about how Northern Graphite plans to build the largest Battery Anode Material (BAM) plant in North America.

Continue Reading

Subscribe

Popular