Electrification
Every Electric Semi Truck in One Graphic
Every Electric Semi Truck in One Graphic
Electric semi trucks are coming, and they could help to decarbonize the shipping and logistics industry. However, range remains a major limitation.
This presents challenges for long-hauling, where the average diesel-powered semi can travel up to 2,000 miles before refueling. Compare this to the longest range electric model, the Tesla Semi, which promises up to 500 miles. A key word here is “promises”—the Semi is still in development, and nothing has been proven yet.
In this infographic, we’ve listed all of the upcoming electric semi trucks, complete with range and charge time estimates. Further in the article, we’ll explore the potential commercial use cases of this first generation of trucks.
Model Overview
The following table includes all of the models included in the above infographic.
Company | Truck Name | Range | Charge Time | Expected Delivery |
---|---|---|---|---|
🇺🇸 Tesla | Semi | 300-500 miles | TBD | 2023 |
🇺🇸 Freightliner | eCascadia | 250 miles | 80% in as low as 1.5 hrs | 2022 |
🇸🇪 Volvo | VNR Electric | 275 miles | 80% in as low as 1 hr | 2022 |
🇺🇸 Kenworth | T680E | 150 miles | 100% in as low as 3.3 hrs | TBD |
🇺🇸 Peterbilt | 579EV | 150 miles | 100% in as low as 3.3 hrs | 2022 |
🇨🇳 BYD | 8TT | 167 miles | 100% in as low as 2.5 hrs | In operation |
🇺🇸 Nikola | Tre BEV | 350 miles | 10% to 80% in as low as 2 hrs | 2022 |
Source: US News, CNBC, InsideEVs
With the exception of Tesla’s Semi, all of these trucks are currently in operation or expected to begin delivering this year. You may want to take this with a grain of salt, as the electric vehicle industry has become notorious for delays.
In terms of range, Tesla and Nikola are promising the highest figures (300+ miles), while the rest of the competition is targeting between 150 to 275 miles. It’s reasonable to assume that the Tesla and Nikola semis will be the most expensive.
Charge times are difficult to compare because of the variables involved. This includes the amount of charge and the type of charger used. Nikola, for example, claims it will take 2 hours to charge its Tre BEV from 10% to 80% when using a 240kW charger.
Charger technology is also improving quickly. Tesla is believed to be rolling out a 1 MW (1,000 kW) charger that could add 400 miles of range in just 30 minutes.
Use Cases of Electric Semi Trucks
Given their relatively lower ranges, electric semis are unlikely to be used for long hauls.
Instead, they’re expected to be deployed on regional and urban routes, where the total distance traveled between destinations is much lower. There are many reasons why electric semis are suited for these routes, as listed below:
- Smaller batteries can be installed, which keeps the cost of the truck lower
- Urban routes provide greater opportunities to use regenerative braking
- Quieter and cleaner operation in densely populated areas
An example of a regional route would be delivering containers from the Port of Los Angeles to the Los Angeles Transportation Center Intermodal Facility (LATC). The LATC is where containers are loaded onto trains, and is located roughly 28 miles away.
With a round trip totaling nearly 60 miles, an electric semi with a range of 200 miles could feasibly complete this route three times before needing a charge. The truck could be charged overnight, as well as during off hours in the middle of the day.
Hydrogen for Long Hauls?
We’ve covered the differences between battery and hydrogen fuel cell vehicles in the past, but this was from a passenger car perspective. The conclusion, in that case, was that battery electric has become the dominant technology. In terms of long-haul trucking, however, hydrogen may have an edge.
If we look at what will become mainstream, probably for smaller mobility it will be EVs, and fuel cells for larger mobility. That is the conclusion so far.
-Toshihiro Mibe, CEO, Honda
There are several reasons for why hydrogen could be beneficial for delivering heavy cargo over long distances. These are listed below:
- Refueling a hydrogen fuel cell takes less time than recharging a battery. Note, however, that charge times are still improving.
- A fuel cell configuration is typically lighter than an equivalent battery pack. Less drivetrain weight translates to a higher cargo capacity.
- Hydrogen-powered trucks could achieve a much higher range.
This last point hasn’t been proven yet, but we can reference Nikola, which is developing hydrogen-powered semi trucks. The company has two models in the works, which are the Tre FCEV with a range of 500 miles, and the Two FCEV with a range of 900 miles.
Keep in mind that these numbers are once again estimates and that Nikola has been accused of fraud in the past.
Who’s Using Electric Semi Trucks Today?
Although there are very few models available, electric semi trucks are indeed being used today.
In January 2020, Anheuser-Busch announced that it had received its 100th 8TT. The 8TT is produced by China’s BYD Motors and was one of the first electric semis to see real-world application. The brewing company uses its 8TTs to deliver products to retail destinations across California (e.g. grocery stores).
Another U.S. company using electric semis is Walmart. The retailer is trialing both the eCascadia from Freightliner and the Tre BEV from Nikola. The trucks are being used to pick up cargo from suppliers and then deliver it to regional consolidation centers.
Electrification
Top 20 Countries by Battery Storage Capacity
China holds about two-thirds of global BESS capacity.

Visualizing the Top 20 Countries by Battery Storage Capacity
Over the past three years, the Battery Energy Storage System (BESS) market has been the fastest-growing segment of global battery demand. These systems store electricity using batteries, helping stabilize the grid, store renewable energy, and provide backup power.
In 2024, the market grew by 52%, compared to 25% growth in the EV battery market. Among the top companies in the BESS market are technology giants such as Samsung, LG, BYD, Panasonic, and Tesla.
This graphic highlights the top 20 BESS markets by current and planned grid capacity in gigawatt hour (GWh), based on exclusive data from Rho Motion as of February 2025.
Chinese Dominance
As with the EV market, China currently dominates global BESS deployments, accounting for approximately two-thirds of installed capacity. However, other markets are expected to grow significantly in the coming years, driven by low-cost lithium-ion cells and the expansion of renewable energy capacity.
Currently, China has 215.5 GWh of installed capacity and an ambitious 505.6 GWh project pipeline. The U.S. follows with 82.1 GWh installed and 162.5 GWh planned.
Top BESS Markets | Installed 2024 (GWh) | 2027P |
---|---|---|
🇨🇳 China | 215.5 | 721.2 |
🇺🇸 USA | 82.1 | 244.6 |
🇬🇧 UK | 7.5 | 56.3 |
🇦🇺 Australia | 5.6 | 102.9 |
🇨🇱 Chile | 3.8 | 41.0 |
🇮🇹 Italy | 2.2 | 7.9 |
🇸🇦 Saudi Arabia | 1.3 | 32.4 |
🇿🇦 South Africa | 1.3 | 9.4 |
🇮🇪 Ireland | 1.6 | 2.5 |
🇵🇭 Philippines | 1.0 | 6.1 |
🇯🇵 Japan | 1.0 | 5.0 |
🇩🇪 Germany | 1.0 | 6.2 |
🇰🇷 South Korea | 1.1 | 1.3 |
🇮🇱 Israel | 0.8 | 4.6 |
🇫🇷 France | 0.6 | 1.8 |
🇧🇪 Belgium | 0.7 | 5.3 |
🇺🇿 Uzbekistan | 0.6 | 5.9 |
🇸🇪 Sweden | 0.6 | 1.5 |
🇮🇳 India | 0.5 | 4.3 |
🇨🇦 Canada | 0.3 | 18.3 |
Canada is projected to be the fastest-growing market through 2027, with its cumulative capacity hitting 18.3 GWh—a significant increase from its current 0.3 GWh capacity.
Countries such as Australia (97.3 GWh pipeline), Saudi Arabia (31.1 GWh), and Chile (37.2 GWh) have relatively small current installations but plan substantial expansions. Within Europe, the UK leads with 7.5 GWh of installed capacity and 48.7 GWh in the pipeline, while Italy, Germany, France, and Belgium show steady but more modest growth.
Despite being technological leaders, Japan (4 GWh pipeline) and South Korea (0.3 GWh) have relatively low planned BESS expansions.
According to Rho Motion, China will remain the dominant player in 2027, but its share of the total market is expected to decline to just over 50% based on the current project pipeline.
While the BESS market is expanding, challenges remain, including grid connection bottlenecks and the development of revenue streams in emerging markets.
Electrification
Visualizing Chinese EV Market Share Overseas
Chinese brands accounted for 62% of global EV sales in 2024.

Visualizing Chinese EV Market Share Overseas
China is the undisputed global powerhouse of the EV industry, leading in both domestic sales and overall production. Chinese brands were responsible for 62% of EV global sales in 2024.
This graphic shows the presence of Chinese electric vehicles in other countries, considering total EV sales and market share. This data comes exclusively from Rho Motion’s EV Sales Quarterly Outlook, as of 2024.
Affordable EVs
As the global EV market has expanded, in 2024, over 17 million units were sold. Chinese manufacturers have aggressively pursued international opportunities, offering affordable vehicles that often undercut local competitors.
However, market access has varied significantly across regions. The U.S. and Canada are the only markets where Chinese-made EVs have no presence. The U.S. has taken a firm stance against Chinese EVs, imposing a 100% tariff in 2024, and more recently enacting laws banning Chinese technology in EVs on U.S. roads. Given its deep economic ties with the U.S., Canada followed suit with identical tariffs.
Country | Total EV Sales | Chinese Market Share |
---|---|---|
🇺🇸 U.S. | 1,540,354 | 0% |
🇩🇪 Germany | 577,630 | 4% |
🇬🇧 UK | 571,141 | 7% |
🇫🇷 France | 464,589 | 5% |
🇨🇦 Canada | 246,424 | 0% |
🇧🇪 Belgium | 192,560 | 3% |
🇳🇱 Netherlands | 190,784 | 6% |
🇸🇪 Sweden | 165,256 | 5% |
🇳🇴 Norway | 126,088 | 9% |
🇧🇷 Brazil | 125,624 | 82% |
🇪🇸 Spain | 122,375 | 10% |
🇮🇹 Italy | 121,889 | 6% |
🇯🇵 Japan | 114,129 | 2% |
🇦🇺 Australia | 113,511 | 26% |
🇮🇳 India | 104,426 | 23% |
🇩🇰 Denmark | 103,202 | 8% |
🇲🇽 Mexico | 95,282 | 70% |
🇹🇭 Thailand | 77,250 | 77% |
🇵🇹 Portugal | 72,070 | 8% |
🇮🇱 Israel | 69,595 | 64% |
🇨🇭 Switzerland | 68,407 | 1% |
🇦🇹 Austria | 63,717 | 11% |
🇮🇩 Indonesia | 43,202 | 75% |
🇫🇮 Finland | 37,881 | 2% |
🇮🇪 Ireland | 30,105 | 9% |
🇸🇬 Singapore | 29,521 | 26% |
🇲🇾 Malaysia | 21,798 | 52% |
🇳🇵 Nepal | 12,705 | 74% |
🇳🇿 New Zealand | 10,027 | 15% |
🇨🇱 Chile | 5,604 | 42% |
Europe, by contrast, has been more open to Chinese EVs but remains cautious about protecting its domestic automotive industry. In 2024, following an anti-subsidy investigation, the EU introduced variable BEV import tariffs on specific Chinese automakers of up to an additional 35.3%.
Meanwhile, in countries without a strong domestic auto industry, Chinese EVs have rapidly gained market share. This is especially evident in neighboring Asian countries and in South and Central America, where Chinese manufacturers are expanding aggressively by beginning to build production capacity and capitalizing on the demand for affordable electric vehicles.
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc3 years ago
How Is Aluminum Made?
-
Electrification3 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification2 years ago
Life Cycle Emissions: EVs vs. Combustion Engine Vehicles
-
Misc2 years ago
Mapped: U.S. Mineral Production Value by State in 2022
-
Energy Shift2 years ago
Mapped: Biggest Sources of Electricity by State and Province