Electrification
Visualized: Battery Vs. Hydrogen Fuel Cell
Battery Electric Vs. Hydrogen Fuel Cell
Since the introduction of the Nissan Leaf (2010) and Tesla Model S (2012), battery-powered electric vehicles (BEVs) have become the primary focus of the automotive industry.
This structural shift is moving at an incredible rate—in China, 3 million BEVs were sold in 2021, up from 1 million the previous year. In the U.S., the number of models available for sale is expected to double by 2024.
In order to meet global climate targets, however, the International Energy Agency claims that the auto industry will require 30 times more minerals per year. Many fear that this could put a strain on supply.
“The data shows a looming mismatch between the world’s strengthened climate ambitions and the availability of critical minerals.”
– Fatih Birol, IEA
Thankfully, BEVs are not the only solution for decarbonizing transportation. In this infographic, we explain how the fuel cell electric vehicle (FCEV) works.
How Does Hydrogen Fuel Cell Work?
FCEVs are a type of electric vehicle that produces no emissions (aside from the environmental cost of production). The main difference is that BEVs contain a large battery to store electricity, while FCEVs create their own electricity by using a hydrogen fuel cell.
Major BEV Components | Major FCEV Components |
---|---|
Battery | Battery |
Onboard charger | Hydrogen fuel tank |
Electric motor | Fuel cell stack |
Electric motor | |
Exhaust |
Let’s go over the functions of the major FCEV components.
Battery
First is the lithium-ion battery, which stores electricity to power the electric motor. In an FCEV, the battery is smaller because it’s not the primary power source. For general context, the Model S Plaid contains 7,920 lithium-ion cells, while the Toyota Mirai FCEV contains 330.
Hydrogen Fuel Tank
FCEVs have a fuel tank that stores hydrogen in its gas form. Liquid hydrogen can’t be used because it requires cryogenic temperatures (−150°C or −238°F). Hydrogen gas, along with oxygen, are the two inputs for the hydrogen fuel cell.
Fuel Cell Stack and Motor
The fuel cell uses hydrogen gas to generate electricity. To explain the process in layman’s terms, hydrogen gas passes through the cell and is split into protons (H+) and electrons (e-).
Protons pass through the electrolyte, which is a liquid or gel material. Electrons are unable to pass through the electrolyte, so they take an external path instead. This creates an electrical current to power the motor.
Exhaust
At the end of the fuel cell’s process, the electrons and protons meet together and combine with oxygen. This causes a chemical reaction that produces water (H2O), which is then emitted out of the exhaust pipe.
Which Technology is Winning?
As you can see from the table below, most automakers have shifted their focus towards BEVs. Notably missing from the BEV group is Toyota, the world’s largest automaker.
Hydrogen fuel cells have drawn criticism from notable figures in the industry, including Tesla CEO Elon Musk and Volkswagen CEO Herbert Diess.
Green hydrogen is needed for steel, chemical, aero… and should not end up in cars. Far too expensive, inefficient, slow and difficult to rollout and transport.
– Herbert Diess, CEO, Volkswagen Group
Toyota and Hyundai are on the opposing side, as both companies continue to invest in fuel cell development. The difference between them, however, is that Hyundai (and sister brand Kia) has still released several BEVs.
This is a surprising blunder for Toyota, which pioneered hybrid vehicles like the Prius. It’s reasonable to think that after this success, BEVs would be a natural next step. As Wired reports, Toyota placed all of its chips on hydrogen development, ignoring the fact that most of the industry was moving a different way. Realizing its mistake, and needing to buy time, the company has resorted to lobbying against the adoption of EVs.
Confronted with a losing hand, Toyota is doing what most large corporations do when they find themselves playing the wrong game—it’s fighting to change the game.
– Wired
Toyota is expected to release its first BEV, the bZ4X crossover, for the 2023 model year—over a decade since Tesla launched the Model S.
Challenges to Fuel Cell Adoption
Several challenges are standing in the way of widespread FCEV adoption.
One is performance, though the difference is minor. In terms of maximum range, the best FCEV (Toyota Mirai) was EPA-rated for 402 miles, while the best BEV (Lucid Air) received 505 miles.
Two greater issues are 1) hydrogen’s efficiency problem, and 2) a very limited number of refueling stations. According to the U.S. Department of Energy, there are just 48 hydrogen stations across the entire country. 47 are located in California, and 1 is located in Hawaii.
On the contrary, BEVs have 49,210 charging stations nationwide, and can also be charged at home. This number is sure to grow, as the Biden administration has allocated $5 billion for states to expand their charging networks.
Electrification
Charted: Lithium-Ion Batteries Keep Getting Cheaper
Cell prices have fallen 73% since 2014.
Lithium-Ion Batteries Keep Getting Cheaper
Battery metal prices have struggled as a surge in new production overwhelmed demand, coinciding with a slowdown in electric vehicle adoption.
Lithium prices, for example, have plummeted nearly 90% since the late 2022 peak, leading to mine closures and impacting the price of lithium-ion batteries used in EVs.
This graphic uses exclusive data from our partner Benchmark Mineral Intelligence to show the evolution of lithium-ion battery prices over the last 10 years.
More than Half of the Battery Price Comes from the Cathode
Lithium-ion batteries operate by collecting current and directing it into the battery during the charging process. Typically, a graphite anode attracts lithium ions and retains them as a charge.
During discharge, the cathode draws the stored lithium ions and channels them to another current collector. The circuit functions effectively because the anode and cathode do not come into direct contact and are suspended in a medium that facilitates the easy flow of ions.
Currently, 54% of the cell price comes from the cathode, 18% from the anode, and 28% from other components.
Declining Prices
The average price of lithium-ion battery cells dropped from $290 per kilowatt-hour in 2014 to $103 in 2023.
Year | Global Avg. Cell Price ($ per kilowatt-hour) |
---|---|
2014 | 290 |
2015 | 230 |
2016 | 180 |
2017 | 140 |
2018 | 128 |
2019 | 120 |
2020 | 110 |
2021 | 99 |
2022 | 129 |
2023 | 103 |
2024 (ytd) | 78 |
In the coming months, prices are expected to drop further due to oversupply from China.
Despite declining prices, battery demand is projected to increase ninefold by 2040, with the battery industry’s total capital expenditure expected to nearly triple, rising from $567 billion in 2030 to $1.6 trillion in 2040.
Lithium ion Battery Market Size | Global Capacity (Gigawatt hour) |
---|---|
2016 | 163 |
2017 | 219 |
2018 | 353 |
2019 | 496 |
2020 | 710 |
2021 | 1026 |
2022 | 1652 |
2023 | 2555 |
2024F | 3476 |
Learn More About Batteries From Visual Capitalist
If you enjoyed this post, be sure to check out this graphic that ranks the top lithium-ion battery producing countries by their forecasted capacity in 2030.
Electrification
Ranked: The Top Lithium-Ion Battery Producing Countries by 2030
Chinese companies are expected to hold nearly 70% of global battery capacity by decade’s end.
Top Lithium-Ion Battery Producers by 2030
Lithium-ion batteries are essential for a clean economy due to their high energy density and efficiency. They power most portable consumer electronics, such as cell phones and laptops, and are used in the majority of today’s electric vehicles.
This graphic uses exclusive data from our partner, Benchmark Mineral Intelligence, to rank the top lithium-ion battery producing countries by their forecasted capacity (measured in gigawatt-hours or GWh) in 2030.
China to Keep Dominance
Chinese companies are expected to account for nearly 70% of global battery capacity by 2030, delivering over 6,200 gigawatt-hours. Chinese giant Contemporary Amperex Technology Co., Limited (CATL) alone is forecasted to produce more than the combined output from Canada, France, Hungary, Germany, and the UK.
Country | 2030F capacity (GWh) | Top producers |
---|---|---|
🇨🇳 China | 6,268.3 | CATL, BYD, CALB |
🇺🇸 U.S. | 1,260.6 | Tesla, LGES, SK On |
🇩🇪 Germany | 261.8 | Tesla, Northvolt, VW |
🇭🇺 Hungary | 210.1 | CATL, SK On, Samsung |
🇨🇦 Canada | 203.8 | Northvolt, LGES, VW |
🇫🇷 France | 162.0 | Verkor, Prologium, ACC |
🇰🇷 South Korea | 94.5 | LGES, Samsung, SK On |
🇬🇧 UK | 66.9 | Envision, Tata |
Currently, China is home to six of the world’s 10 biggest battery makers. China’s battery dominance is driven by its vertical integration across the entire EV supply chain, from mining metals to producing EVs.
By 2030, the U.S. is expected to be second in battery capacity after China, with 1,261 gigawatt-hours, led by LG Energy Solution and Tesla.
In Europe, Germany is forecasted to lead in lithium-ion battery production, with 262 gigawatt-hours, most of it coming from Tesla. The company currently operates its Giga Berlin plant in the country, Tesla’s first manufacturing location in Europe.
Learn More About Batteries From Visual Capitalist
If you enjoyed this post, be sure to check out Charted: Investment Needed to Meet Battery Demand by 2040. This visualization shows the total capital expenditure (capex) requirements to build capacity to meet future battery demand by 2030 and 2040.
-
Electrification2 years ago
The Key Minerals in an EV Battery
-
Energy Shift2 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification1 year ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Energy Shift3 years ago
The Solar Power Duck Curve Explained
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification2 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification3 years ago
Breaking Down the Cost of an EV Battery Cell