Electrification
Charted: The Most Expensive Battery Metals
The Five Most Expensive Battery Metals
Battery metal markets are booming on the back of rising electric vehicle sales.
Supply chain issues and a global rush to secure supplies have skyrocketed battery metal prices over the last year. And if battery metals remain expensive, the decade-long freefall in lithium-ion battery prices might come to a temporary halt.
The above infographic highlights the five most expensive battery metals as of December 2022 using prices from the Institute of Rare Earths and Strategic Metals (ISE).
How Much Do Battery Metals Cost?
Cobalt was by far the most expensive battery metal until late 2021, which was when lithium prices hit an inflection point, heading towards all-time highs.
A single tonne of lithium carbonate, one of the refined forms of lithium that’s used in batteries, now costs over $80,000, up from around $6,500 at the beginning of 2021.
Metal | Price per tonne (6-month average) | Use in batteries |
---|---|---|
Lithium carbonate | $82,141 | Cathode |
Copper | $9,417 | Current collectors |
Cobalt sulfate | $8,767 | Cathode |
Nickel sulfate | $6,488 | Cathode |
Manganese sulfate | $947 | Cathode |
Prices have been converted from Euro to USD as of Dec. 8, 2022.
Lithium carbonate prices rose by around 496% in 2021, and have surged by over 100% year-to-date as of November 2022. Increasing EV demand and sales are driving prices from the demand side, with the lack of supply tightening the squeeze.
This year, lithium supplies have been affected by heatwaves in China, where some factories were temporarily shut down due to power shortages from drought-hit hydropower generation. From a broader perspective, it takes anywhere between three to five years for new lithium supply capacity to come online, making it difficult for suppliers to react quickly to rising demand.
Cobalt’s high cost is largely attributed to how geographically concentrated its supply is. Around 70% of global mined cobalt production comes from the Democratic Republic of Congo (DRC). Furthermore, cobalt mining in the DRC is associated with several human rights issues, including child labor.
The majority of the most expensive battery metals are used to build the cathode. The cathode is arguably the most important part of the battery, determining performance, longevity, and range. Copper is the only non-cathode material on the list. Thanks to its excellent electrical conductivity, copper is used as a current collector for battery anodes, serving as a medium for electric current and an outlet for heat.
On average, the cathode accounts for 51% of the cost of a single lithium-ion battery cell, largely due to the metals it contains.
What Does This Mean for EVs?
After falling by 89% from 2010 to 2021, lithium-ion battery pack prices are forecasted to rise this year, according to BloombergNEF.
Average battery pack prices are expected to increase from $132 per kilowatt-hour (kWh) in 2021 to $135/kWh in 2022. While the increase is small, if prolonged, it could delay price parity between EVs and gas-powered cars, which is projected to occur once prices fall below $100/kWh.
In terms of the EV transition, higher battery metal prices could ultimately end up increasing the cost of the average electric vehicle, potentially becoming a speed bump to EV adoption. Consequently, an increase in battery metal supply and the subsequent stabilization in prices will be critical in keeping EV momentum on track.
Electrification
Visualizing the Supply Deficit of Battery Minerals (2024-2034P)
A surplus of key metals is expected to shift to a major deficit within a decade.

Visualizing the Supply Deficit of Battery Minerals (2024-2034P)
The world currently produces a surplus of key battery minerals, but this is projected to shift to a significant deficit over the next 10 years.
This graphic illustrates this change, driven primarily by growing battery demand. The data comes exclusively from Benchmark Mineral Intelligence, as of November 2024.
Minerals in a Lithium-Ion Battery Cathode
Minerals make up the bulk of materials used to produce parts within the cell, ensuring the flow of electrical current:
- Lithium: Acts as the primary charge carrier, enabling energy storage and transfer within the battery.
- Cobalt: Stabilizes the cathode structure, improving battery lifespan and performance.
- Nickel: Boosts energy density, allowing batteries to store more energy.
- Manganese: Enhances thermal stability and safety, reducing overheating risks.
The cells in an average battery with a 60 kilowatt-hour (kWh) capacity—the same size used in a Chevy Bolt—contain roughly 185 kilograms of minerals.
Battery Demand Forecast
Due to the growing demand for these materials, their production and mining have increased exponentially in recent years, led by China. In this scenario, all the metals shown in the graphic currently experience a surplus.
In the long term, however, with the greater adoption of batteries and other renewable energy technologies, projections indicate that all these minerals will enter a deficit.
For example, lithium demand is expected to more than triple by 2034, resulting in a projected deficit of 572,000 tonnes of lithium carbonate equivalent (LCE). According to Benchmark analysis, the lithium industry would need over $40 billion in investment to meet demand by 2030.
Metric | Lithium (in tonnes LCE) | Nickel (in tonnes) | Cobalt (in tonnes) | Manganese (in tonnes) |
---|---|---|---|---|
2024 Demand | 1,103,000 | 3,440,000 | 230,000 | 119,000 |
2024 Surplus | 88,000 | 117,000 | 24,000 | 11,000 |
2034 Demand | 3,758,000 | 6,082,000 | 468,000 | 650,000 |
2034 Deficit | -572,000 | -839,000 | -91,000 | -307,000 |
Nickel demand, on the other hand, is expected to almost double, leading to a deficit of 839,000 tonnes by 2034. The surge in demand is attributed primarily to the rise of mid- and high-performance electric vehicles (EVs) in Western markets.
Electrification
Visualizing the EU’s Critical Minerals Gap by 2030
This graphic underscores the scale of the challenge the bloc faces in strengthening its critical mineral supply by 2030.

Visualizing EU’s Critical Minerals Gap by 2030
The European Union’s Critical Raw Material Act sets out several ambitious goals to enhance the resilience of its critical mineral supply chains.
The Act includes non-binding targets for the EU to build sufficient mining capacity so that mines within the bloc can meet 10% of its critical mineral demand.
Additionally, the Act establishes a goal for 40% of demand to be met by processing within the bloc, and 25% through recycling.
Several months after the Act’s passage in May 2024, this graphic highlights the scale of the challenge the EU aims to overcome. This data comes exclusively from Benchmark Mineral Intelligence, as of July 2024. The graphic excludes synthetic graphite.
Securing Europe’s Supply of Critical Materials
With the exception of nickel mining, none of the battery minerals deemed strategic by the EU are on track to meet these goals.
Graphite, the largest mineral component used in batteries, is of particular concern. There is no EU-mined supply of manganese ore or coke, the precursor to synthetic graphite.
By 2030, the European Union is expected to supply 16,000 tonnes of flake graphite locally, compared to the 45,000 tonnes it would need to meet the 10% mining target.
Metal | 2030 Demand (tonnes) | Mining (F) | Processing (F) | Recycling (F) | Mining Target | Processing Target | Recycling Target |
---|---|---|---|---|---|---|---|
Lithium | 459K | 29K | 46K | 25K | 46K | 184K | 115K |
Nickel | 403K | 42K | 123K | 25K | 40K | 161K | 101K |
Cobalt | 94K | 1K | 19K | 6K | 9K | 37K | 23K |
Manganese | 147K | 0K | 21K | 5K | 15K | 59K | 37K |
Flake Graphite | 453K | 16K | 17K | N/A | 45K | 86K | N/A |
The EU is also expected to mine 29,000 tonnes of LCE (lithium carbonate equivalent) compared to the 46,000 tonnes needed to meet the 10% target.
In terms of mineral processing, the bloc is expected to process 25% of its lithium requirements, 76% of nickel, 51% of cobalt, 36% of manganese, and 20% of flake graphite.
The EU is expected to recycle only 22% of its lithium needs, 25% of nickel, 26% of cobalt, and 14% of manganese. Graphite, meanwhile, is not widely recycled on a commercial scale.
-
Energy Shift3 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification3 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification3 years ago
Visualized: Battery Vs. Hydrogen Fuel Cell