Connect with us

Electrification

Visualizing the World’s Largest Hydroelectric Dams

Published

on

largest hydroelectric dams

Visualizing the World’s Largest Hydroelectric Dams

Did you know that hydroelectricity is the world’s biggest source of renewable energy? According to recent figures from the International Renewable Energy Agency (IRENA), it represents 40% of total capacity, ahead of solar (28%) and wind (27%).

This type of energy is generated by hydroelectric power stations, which are essentially large dams that use the water flow to spin a turbine. They can also serve secondary functions such as flow monitoring and flood control.

To help you learn more about hydropower, we’ve visualized the five largest hydroelectric dams in the world, ranked by their maximum output.

Overview of the Data

The following table lists key information about the five dams shown in this graphic, as of 2021. Installed capacity is the maximum amount of power that a plant can generate under full load.

CountryDamRiverInstalled Capacity
(gigawatts)
Dimensions
(meters)
🇨🇳 ChinaThree Gorges DamYangtze River22.5181 x 2,335
🇧🇷 Brazil / 🇵🇾 ParaguayItaipu DamParana River14.0196 x 7,919
🇨🇳 ChinaXiluodu DamJinsha River13.9286 x 700
🇧🇷 BrazilBelo Monte DamXingu River11.290 X 3,545
🇻🇪 VenezuelaGuri DamCaroni River10.2162 x 7,426

At the top of the list is China’s Three Gorges Dam, which opened in 2003. It has an installed capacity of 22.5 gigawatts (GW), which is close to double the second-place Itaipu Dam.

In terms of annual output, the Itaipu Dam actually produces about the same amount of electricity. This is because the Parana River has a low seasonal variance, meaning the flow rate changes very little throughout the year. On the other hand, the Yangtze River has a significant drop in flow for several months of the year.

For a point of comparison, here is the installed capacity of the world’s three largest solar power plants, also as of 2021:

  • Bhadla Solar Park, India: 2.2 GW
  • Hainan Solar Park, China: 2.2 GW
  • Pavagada Solar Park, India: 2.1 GW

Compared to our largest dams, solar plants have a much lower installed capacity. However, in terms of cost (cents per kilowatt-hour), the two are actually quite even.

Closer Look: Three Gorges Dam

The Three Gorges Dam is an engineering marvel, costing over $32 billion to construct. To wrap your head around its massive scale, consider the following facts:

  • The Three Gorges Reservoir (which feeds the dam) contains 39 trillion kg of water (42 billion tons)
  • In terms of area, the reservoir spans 400 square miles (1,045 square km)
  • The mass of this reservoir is large enough to slow the Earth’s rotation by 0.06 microseconds

Of course, any man-made structure this large is bound to have a profound impact on the environment. In a 2010 study, it was found that the dam has triggered over 3,000 earthquakes and landslides since 2003.

The Consequences of Hydroelectric Dams

While hydropower can be cost-effective, there are some legitimate concerns about its long-term sustainability.

For starters, hydroelectric dams require large upstream reservoirs to ensure a consistent supply of water. Flooding new areas of land can disrupt wildlife, degrade water quality, and even cause natural disasters like earthquakes.

Dams can also disrupt the natural flow of rivers. Other studies have found that millions of people living downstream from large dams suffer from food insecurity and flooding.

Whereas the benefits have generally been delivered to urban centers or industrial-scale agricultural developments, river-dependent populations located downstream of dams have experienced a difficult upheaval of their livelihoods.
– Richter, B.D. et al. (2010)

Perhaps the greatest risk to hydropower is climate change itself. For example, due to the rising frequency of droughts, hydroelectric dams in places like California are becoming significantly less economical.

Click for Comments

Electrification

How EV Adoption Will Impact Oil Consumption (2015-2025P)

How much oil is saved by adding electric vehicles into the mix? We look at data from 2015 to 2025P for different types of EVs.

Published

on

The EV Impact on Oil Consumption

As the world moves towards the electrification of the transportation sector, demand for oil will be replaced by demand for electricity.

To highlight the EV impact on oil consumption, the above infographic shows how much oil has been and will be saved every day between 2015 and 2025 by various types of electric vehicles, according to BloombergNEF.

How Much Oil Do Electric Vehicles Save?

A standard combustion engine passenger vehicle in the U.S. uses about 10 barrels of oil equivalent (BOE) per year. A motorcycle uses 1, a Class 8 truck about 244, and a bus uses more than 276 BOEs per year.

When these vehicles become electrified, the oil their combustion engine counterparts would have used is no longer needed, displacing oil demand with electricity.

Since 2015, two and three-wheeled vehicles, such as mopeds, scooters, and motorcycles, have accounted for most of the oil saved from EVs on a global scale. With a wide adoption in Asia specifically, these vehicles displaced the demand for almost 675,000 barrels of oil per day in 2015. By 2021, this number had quickly grown to 1 million barrels per day.

Let’s take a look at the daily displacement of oil demand by EV segment.

Number of barrels saved per day, 2015Number of barrels saved per day, 2025P
Electric Passenger Vehicles8,600 886,700
Electric Commercial Vehicles0145,000
Electric Buses 43,100333,800
Electric Two & Three-Wheelers674,3001,100,000
Total Oil Barrels Per Day726,0002,465,500

Today, while work is being done in the commercial vehicle segment, very few large trucks on the road are electric—however, this is expected to change by 2025.

Meanwile, electric passenger vehicles have shown the biggest growth in adoption since 2015.

In 2022, the electric car market experienced exponential growth, with sales exceeding 10 million cars. The market is expected to continue its strong growth throughout 2023 and beyond, eventually coming to save a predicted 886,700 barrels of oil per day in 2025.

From Gas to Electric

While the world shifts from fossil fuels to electricity, BloombergNEF predicts that the decline in oil demand does not necessarily equate to a drop in oil prices.

In the event that investments in new supply capacity decrease more rapidly than demand, oil prices could still remain unstable and high.

The shift toward electrification, however, will likely have other implications.

While most of us associate electric vehicles with lower emissions, it’s good to consider that they are only as sustainable as the electricity used to charge them. The shift toward electrification, then, presents an incredible opportunity to meet the growing demand for electricity with clean energy sources, such as wind, solar and nuclear power.

The shift away from fossil fuels in road transport will also require expanded infrastructure. EV charging stations, expanded transmission capacity, and battery storage will likely all be key to supporting the wide-scale transition from gas to electricity.

Continue Reading

Electrification

Graphite: An Essential Material in the Battery Supply Chain

Graphite represents almost 50% of the materials needed for batteries by weight, no matter the chemistry.

Published

on

Graphite: An Essential Material in the Battery Supply Chain

The demand for lithium-ion (Li-ion) batteries has skyrocketed in recent years due to the increasing popularity of electric vehicles (EVs) and renewable energy storage systems.

What many people don’t realize, however, is that the key component of these batteries is not just lithium, but also graphite.

Graphite represents almost 50% of the materials needed for batteries by weight, regardless of the chemistry. In Li-ion batteries specifically, graphite makes up the anode, which is the negative electrode responsible for storing and releasing electrons during the charging and discharging process.

To explore just how essential graphite is in the battery supply chain, this infographic sponsored by Northern Graphite dives into how the anode of a Li-ion battery is made.

What is Graphite?

Graphite is a naturally occurring form of carbon that is used in a wide range of industrial applications, including in synthetic diamonds, EV Li-ion batteries, pencils, lubricants, and semiconductor substrates.

It is stable, high-performing, and reusable. While it comes in many different grades and forms, battery-grade graphite falls into one of two classes: natural or synthetic.

Natural graphite is produced by mining naturally occurring mineral deposits. This method produces only one to two kilograms of CO2 emissions per kilogram of graphite.

Synthetic graphite, on the other hand, is produced by the treatment of petroleum coke and coal tar, producing nearly 5 kg of CO2 per kilogram of graphite along with other harmful emissions such as sulfur oxide and nitrogen oxide.

A Closer Look: How Graphite Turns into a Li-ion Battery Anode

The battery anode production process is composed of four overarching steps. These are:

  1. Mining
  2. Shaping
  3. Purifying
  4. Coating

Each of these stages results in various forms of graphite with different end-uses.

For instance, the micronized graphite that results from the shaping process can be used in plastic additives. On the other hand, only coated spherical purified graphite that went through all four of the above stages can be used in EV Li-ion batteries.

The Graphite Supply Chain

Despite its growing use in the energy transition all around the world, around 70% of the world’s graphite currently comes from China.

With scarce alternatives to be used in batteries, however, achieving supply security in North America is crucial, and it is using more environmentally friendly approaches to graphite processing.

With a lower environmental footprint and lower production costs, natural graphite serves as the anode material for a greener future.

Click here to learn more about how Northern Graphite plans to build the largest Battery Anode Material (BAM) plant in North America.

Continue Reading

Subscribe

Popular