Connect with us

Electrification

Visualizing the World’s Largest Copper Producers

Published

on

Visualizing the World’s Largest Copper Producers

Visualizing the World’s Largest Copper Producers

Man has relied on copper since prehistoric times. It is a major industrial metal with many applications due to its high ductility, malleability, and electrical conductivity.

Many new technologies critical to fighting climate change, like solar panels and wind turbines, rely on the red metal.

But where does the copper we use come from? Using the U.S. Geological Survey’s data, the above infographic lists the world’s largest copper producing countries in 2021.

The Countries Producing the World’s Copper

Many everyday products depend on minerals, including mobile phones, laptops, homes, and automobiles. Incredibly, every American requires 12 pounds of copper each year to maintain their standard of living.

North, South, and Central America dominate copper production, as these regions collectively host 15 of the 20 largest copper mines.

Chile is the top copper producer in the world, with 27% of global copper production. In addition, the country is home to the two largest mines in the world, Escondida and Collahuasi.

Chile is followed by another South American country, Peru, responsible for 10% of global production.

RankCountry2021E Copper Production (Million tonnes)Share
#1🇨🇱 Chile5.627%
#2🇵🇪 Peru2.210%
#3🇨🇳 China1.88%
#4🇨🇩 DRC 1.88%
#5🇺🇸 United States1.26%
#6🇦🇺 Australia0.94%
#7🇷🇺 Russia0.84%
#8🇿🇲 Zambia0.84%
#9🇮🇩 Indonesia0.84%
#10🇲🇽 Mexico0.73%
#11🇨🇦 Canada0.63%
#12🇰🇿 Kazakhstan0.52%
#13🇵🇱 Poland0.42%
🌍 Other countries2.813%
🌐 World total21.0100%

The Democratic Republic of Congo (DRC) and China share third place, with 8% of global production each. Along with being a top producer, China also consumes 54% of the world’s refined copper.

Copper’s Role in the Green Economy

Technologies critical to the energy transition, such as EVs, batteries, solar panels, and wind turbines require much more copper than conventional fossil fuel based counterparts.

For example, copper usage in EVs is up to four times more than in conventional cars. According to the Copper Alliance, renewable energy systems can require up to 12x more copper compared to traditional energy systems.

Technology2020 Installed Capacity (megawatts)Copper Content (2020, tonnes)2050p Installed Capacity (megawatts)Copper Content (2050p, tonnes)
Solar PV126,735 MW633,675372,000 MW1,860,000
Onshore Wind105,015 MW451,565202,000 MW868,600
Offshore Wind6,013 MW57,72545,000 MW432,000

With these technologies’ rapid and large-scale deployment, copper demand from the energy transition is expected to increase by nearly 600% by 2030.

As the transition to renewable energy and electrification speeds up, so will the pressure for more copper mines to come online.

Subscribe to Visual Capitalist
Click for Comments

Electrification

Visualizing the EU’s Critical Minerals Gap by 2030

This graphic underscores the scale of the challenge the bloc faces in strengthening its critical mineral supply by 2030.

Published

on

This graphic underscores the scale of the challenge the EU faces in strengthening its critical mineral supply chains under the Critical Raw Material Act.

Visualizing EU’s Critical Minerals Gap by 2030

The European Union’s Critical Raw Material Act sets out several ambitious goals to enhance the resilience of its critical mineral supply chains.

The Act includes non-binding targets for the EU to build sufficient mining capacity so that mines within the bloc can meet 10% of its critical mineral demand.

Additionally, the Act establishes a goal for 40% of demand to be met by processing within the bloc, and 25% through recycling.

Several months after the Act’s passage in May 2024, this graphic highlights the scale of the challenge the EU aims to overcome. This data comes exclusively from Benchmark Mineral Intelligence, as of July 2024. The graphic excludes synthetic graphite.

Securing Europe’s Supply of Critical Materials

With the exception of nickel mining, none of the battery minerals deemed strategic by the EU are on track to meet these goals.

Graphite, the largest mineral component used in batteries, is of particular concern. There is no EU-mined supply of manganese ore or coke, the precursor to synthetic graphite.

By 2030, the European Union is expected to supply 16,000 tonnes of flake graphite locally, compared to the 45,000 tonnes it would need to meet the 10% mining target.

Metal 2030 Demand (tonnes)Mining (F)Processing (F)Recycling (F)Mining Target Processing Target Recycling Target
Lithium459K29K46K25K46K184K115K
Nickel403K42K123K25K40K161K101K
Cobalt94K1K19K6K9K37K23K
Manganese147K0K21K5K15K59K37K
Flake Graphite453K16K17KN/A45K86KN/A

The EU is also expected to mine 29,000 tonnes of LCE (lithium carbonate equivalent) compared to the 46,000 tonnes needed to meet the 10% target.

In terms of mineral processing, the bloc is expected to process 25% of its lithium requirements, 76% of nickel, 51% of cobalt, 36% of manganese, and 20% of flake graphite.

The EU is expected to recycle only 22% of its lithium needs, 25% of nickel, 26% of cobalt, and 14% of manganese. Graphite, meanwhile, is not widely recycled on a commercial scale.

Continue Reading

Electrification

Visualizing China’s Cobalt Supply Dominance by 2030

Chinese companies are expected to control 46% of the cobalt supply by 2030.

Published

on

This graphic visualizes the total cobalt supply from the top ten producers in 2030, highlighting China's dominance.

Visualizing China’s Cobalt Supply Dominance by 2030

Chinese dominance over critical minerals used in technologies like smartphones, electric vehicles (EVs), and solar power has become a growing concern for the U.S. and other Western countries.

Currently, China refines 68% of the world’s nickel, 40% of copper, 59% of lithium, and 73% of cobalt, and is continuing to expand its mining operations.

This graphic visualizes the total cobalt supply from the top 10 producers in 2030, highlighting China’s dominance. The data comes from Benchmark Mineral Intelligence, as of July 2024.

Cobalt production (tonnes)Non-Chinese Owned
Production
Chinese Owned
Production
2030F (Total)2030F (Share)
🇨🇩 DRC94,989109,159204,14867.9%
🇮🇩 Indonesia23,28825,59148,87916.3%
🇦🇺 Australia7,07007,0702.4%
🇵🇭 Philippines5,27005,2701.8%
🇷🇺 Russia4,83804,8381.6%
🇨🇦 Canada4,51004,5101.5%
🇨🇺 Cuba4,49604,4961.5%
🇵🇬 Papua New Guinea5413,0673,6081.2%
🇹🇷 Turkey2,83502,8350.9%
🇳🇨 New Caledonia2,79902,7990.9%
🌍 ROW10,3361,90112,2374.1%
Total160,974139,718300,692100.0%

China’s Footprint in Africa

Cobalt is a critical mineral with a wide range of commercial, industrial, and military applications. It has gained significant attention in recent years due to its use in battery production. Today, the EV sector accounts for 40% of the global cobalt market.

The Democratic Republic of Congo (DRC) currently produces 74% of the world’s cobalt supply. Although cobalt deposits exist in regions like Australia, Europe, and Asia, the DRC holds the largest reserves by far.

China is the world’s leading consumer of cobalt, with nearly 87% of its cobalt consumption dedicated to the lithium-ion battery industry.

Although Chinese companies hold stakes in only three of the top 10 cobalt-producing countries, they control over half of the cobalt production in the DRC and Indonesia, and 85% of the output in Papua New Guinea.

Given the DRC’s large share of global cobalt production, many Chinese companies have expanded their presence in the country, acquiring projects and forming partnerships with the Congolese government.

According to Benchmark, Chinese companies are expected to control 46% of the global cobalt mined supply by 2030, a 3% increase from 2023.

By 2030, the top 10 cobalt-producing countries will account for 96% of the total mined supply, with just two countries—the DRC and Indonesia—contributing 84% of the total.

Continue Reading
The Hottest IPO Of the year.

Subscribe

Popular