Electrification
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
Electric vehicles (EVs) require a wider range of minerals for their motors and batteries compared to conventional cars.
In fact, an EV can have up to six times more minerals than a combustion vehicle, making them on average 340 kg (750 lbs) heavier.
This infographic, based on data from the International Energy Agency (IEA), compares the minerals used in a typical electric car with a conventional gas car.
Editor’s note: Steel and aluminum are not shown in analysis. Mineral values are for the entire vehicle including batteries and motors.
Batteries Are Heavy
Sales of electric cars are booming and the rising demand for minerals used in EVs is already posing a challenge for the mining industry to keep up. That’s because, unlike gas cars that run on internal combustion engines, EVs rely on huge, mineral-intensive batteries to power the car.
For example, the average 60 kilowatt-hour (kWh) battery pack—the same size that’s used in a Chevy Bolt—alone contains roughly 185 kilograms of minerals, or about 10 times as much as in a typical car battery (18 kg).
Lithium, nickel, cobalt, manganese, and graphite are all crucial to battery performance, longevity, and energy density. Furthermore, EVs can contain more than a mile of copper wiring inside the stator to convert electric energy into mechanical energy.
Out of the eight minerals in our list, five are not used in conventional cars: graphite, nickel, cobalt, lithium, and rare earths.
Mineral | Content in electric vehicles (kg) | Content in conventional cars (kg) |
---|---|---|
Graphite (natural and synthetic) | 66.3 | 0 |
Copper | 53.2 | 22.3 |
Nickel | 39.9 | 0 |
Manganese | 24.5 | 11.2 |
Cobalt | 13.3 | 0 |
Lithium | 8.9 | 0 |
Rare earths | 0.5 | 0 |
Zinc | 0.1 | 0.1 |
Others | 0.3 | 0.3 |
Minerals listed for the electric car are based on the IEA’s analysis using a 75 kWh battery pack with a NMC 622 cathode and graphite-based anode.
Since graphite is the primary anode material for EV batteries, it’s also the largest component by weight. Although materials like nickel, manganese, cobalt, and lithium are smaller components individually, together they make up the cathode, which plays a critical role in determining EV performance.
Although the engine in conventional cars is heavier compared to EVs, it requires fewer minerals. Engine components are usually made up of iron alloys, such as structural steels, stainless steels, iron base sintered metals, as well as cast iron or aluminum alloyed parts.
EV motors, however, often rely on permanent magnets made of rare earths and can contain up to a mile of copper wiring that converts electric energy into mechanical energy.
The EV Impact on Metals Markets
The growth of the EV market is not only beginning to have a noticeable impact on the automobile industry but the metals market as well.
EVs and battery storage have already displaced consumer electronics to become the largest consumer of lithium and are set to take over from the stainless steel industry as the largest end-user of nickel by 2040.
In 2021 H2, 84,600 tonnes of nickel were deployed onto roads globally in the batteries of all newly sold passenger EVs combined, 59% more than in 2020 H2. Moreover, another 107,200 tonnes of lithium carbonate equivalent (LCE) were deployed globally in new EV batteries, an 88% increase year-on-year.
With rising government support and consumers embracing electric vehicles, securing the supply of the materials necessary for the EV revolution will remain a top priority.
Electrification
Visualizing the EU’s Critical Minerals Gap by 2030
This graphic underscores the scale of the challenge the bloc faces in strengthening its critical mineral supply by 2030.
Visualizing EU’s Critical Minerals Gap by 2030
The European Union’s Critical Raw Material Act sets out several ambitious goals to enhance the resilience of its critical mineral supply chains.
The Act includes non-binding targets for the EU to build sufficient mining capacity so that mines within the bloc can meet 10% of its critical mineral demand.
Additionally, the Act establishes a goal for 40% of demand to be met by processing within the bloc, and 25% through recycling.
Several months after the Act’s passage in May 2024, this graphic highlights the scale of the challenge the EU aims to overcome. This data comes exclusively from Benchmark Mineral Intelligence, as of July 2024. The graphic excludes synthetic graphite.
Securing Europe’s Supply of Critical Materials
With the exception of nickel mining, none of the battery minerals deemed strategic by the EU are on track to meet these goals.
Graphite, the largest mineral component used in batteries, is of particular concern. There is no EU-mined supply of manganese ore or coke, the precursor to synthetic graphite.
By 2030, the European Union is expected to supply 16,000 tonnes of flake graphite locally, compared to the 45,000 tonnes it would need to meet the 10% mining target.
Metal | 2030 Demand (tonnes) | Mining (F) | Processing (F) | Recycling (F) | Mining Target | Processing Target | Recycling Target |
---|---|---|---|---|---|---|---|
Lithium | 459K | 29K | 46K | 25K | 46K | 184K | 115K |
Nickel | 403K | 42K | 123K | 25K | 40K | 161K | 101K |
Cobalt | 94K | 1K | 19K | 6K | 9K | 37K | 23K |
Manganese | 147K | 0K | 21K | 5K | 15K | 59K | 37K |
Flake Graphite | 453K | 16K | 17K | N/A | 45K | 86K | N/A |
The EU is also expected to mine 29,000 tonnes of LCE (lithium carbonate equivalent) compared to the 46,000 tonnes needed to meet the 10% target.
In terms of mineral processing, the bloc is expected to process 25% of its lithium requirements, 76% of nickel, 51% of cobalt, 36% of manganese, and 20% of flake graphite.
The EU is expected to recycle only 22% of its lithium needs, 25% of nickel, 26% of cobalt, and 14% of manganese. Graphite, meanwhile, is not widely recycled on a commercial scale.
Electrification
Visualizing China’s Cobalt Supply Dominance by 2030
Chinese companies are expected to control 46% of the cobalt supply by 2030.
Visualizing China’s Cobalt Supply Dominance by 2030
Chinese dominance over critical minerals used in technologies like smartphones, electric vehicles (EVs), and solar power has become a growing concern for the U.S. and other Western countries.
Currently, China refines 68% of the world’s nickel, 40% of copper, 59% of lithium, and 73% of cobalt, and is continuing to expand its mining operations.
This graphic visualizes the total cobalt supply from the top 10 producers in 2030, highlighting China’s dominance. The data comes from Benchmark Mineral Intelligence, as of July 2024.
Cobalt production (tonnes) | Non-Chinese Owned Production | Chinese Owned Production | 2030F (Total) | 2030F (Share) |
---|---|---|---|---|
🇨🇩 DRC | 94,989 | 109,159 | 204,148 | 67.9% |
🇮🇩 Indonesia | 23,288 | 25,591 | 48,879 | 16.3% |
🇦🇺 Australia | 7,070 | 0 | 7,070 | 2.4% |
🇵🇭 Philippines | 5,270 | 0 | 5,270 | 1.8% |
🇷🇺 Russia | 4,838 | 0 | 4,838 | 1.6% |
🇨🇦 Canada | 4,510 | 0 | 4,510 | 1.5% |
🇨🇺 Cuba | 4,496 | 0 | 4,496 | 1.5% |
🇵🇬 Papua New Guinea | 541 | 3,067 | 3,608 | 1.2% |
🇹🇷 Turkey | 2,835 | 0 | 2,835 | 0.9% |
🇳🇨 New Caledonia | 2,799 | 0 | 2,799 | 0.9% |
🌍 ROW | 10,336 | 1,901 | 12,237 | 4.1% |
Total | 160,974 | 139,718 | 300,692 | 100.0% |
China’s Footprint in Africa
Cobalt is a critical mineral with a wide range of commercial, industrial, and military applications. It has gained significant attention in recent years due to its use in battery production. Today, the EV sector accounts for 40% of the global cobalt market.
The Democratic Republic of Congo (DRC) currently produces 74% of the world’s cobalt supply. Although cobalt deposits exist in regions like Australia, Europe, and Asia, the DRC holds the largest reserves by far.
China is the world’s leading consumer of cobalt, with nearly 87% of its cobalt consumption dedicated to the lithium-ion battery industry.
Although Chinese companies hold stakes in only three of the top 10 cobalt-producing countries, they control over half of the cobalt production in the DRC and Indonesia, and 85% of the output in Papua New Guinea.
Given the DRC’s large share of global cobalt production, many Chinese companies have expanded their presence in the country, acquiring projects and forming partnerships with the Congolese government.
According to Benchmark, Chinese companies are expected to control 46% of the global cobalt mined supply by 2030, a 3% increase from 2023.
By 2030, the top 10 cobalt-producing countries will account for 96% of the total mined supply, with just two countries—the DRC and Indonesia—contributing 84% of the total.
-
Electrification3 years ago
The Key Minerals in an EV Battery
-
Energy Shift2 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc2 years ago
How Is Aluminum Made?
-
Energy Shift3 years ago
The Solar Power Duck Curve Explained
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets11 months ago
200 Years of Global Gold Production, by Country