Connect with us

Electrification

Interactive: EV Charging Stations Across the U.S. Mapped

Published

on

View the non-interactive version of this map here.

Electric Vehicle Charging Stations Across America: Mapped

As the electric vehicle market continues to expand, having enough EV charging stations is essential to enable longer driving ranges and lower wait times at chargers.

Currently, the U.S. has about 140,000 public EV chargers distributed across almost 53,000 charging stations, which are still far outnumbered by the 145,000 gas fueling stations in the country.

This graphic maps out EV charging stations across the U.S. using data from the National Renewable Energy Lab. The map has interactive features when viewed on desktop, showing pricing structures and the connector types when hovering over a charging station, along with filtering options.

Which States Lead in EV Charging Infrastructure?

As seen in the map above, most electric vehicle charging stations in the U.S. are located on the west and east coasts of the nation, while the Midwest strip is fairly barren aside from the state of Colorado.

California has the highest number of EV charging stations at 15,182, making up an impressive 29% of all charging stations in America. In fact, the Golden State has nearly double the chargers of the following three states, New York (3,085), Florida (2,858), and Texas (2,419) combined.

RankStateNumber of charging stationsShare of U.S. charging stations
1California15,18228.7%
2New York3,0855.8%
3Florida2,8585.4%
4Texas2,4194.6%
5Massachusetts2,3284.4%
6Washington1,8103.4%
7Colorado1,7183.2%
8Georgia1,5963.0%
9Maryland1,3582.6%
10Pennsylvania1,2602.4%
U.S. Total52,889100.0%

It’s no surprise the four top states by GDP have the highest number of EV chargers, and California’s significant lead is also unsurprising considering its ambition to completely phase out the sale of new gas vehicles by 2035.

The Best States for EV Charging Speeds and Cost

While having many charging stations distributed across a state is important, two other factors determine charging convenience: cost and charger level availability.

EV charger pricing structures and charger level availability across the nation are a Wild West with no set rules and few clear expectations.

Finding Free Electric Vehicle Chargers Across States

Generous electric vehicle charging locations will offer unlimited free charging or a time cap between 30 minutes and 4 hours of free charging before payment is required. Some EV charging stations located in parking structures simply require a parking fee, while others might have a flat charging fee per session, charge by kWh consumed, or have an hourly rate.

While California leads in terms of the raw amount of free chargers available in the state, it’s actually the second worst in the top 10 states when it comes to the share of chargers, at only 11% of them free for 30 minutes or more.

RankState nameNumber of free charging stationsShare of free charging stations in the state
1California1,71711.3%
2Florida67323.6%
3New York66221.5%
4Texas60625.1%
5Maryland39929.4%
6Georgia36022.6%
7Washington35819.8%
8Pennsylvania31825.2%
9Colorado27315.9%
10Massachusetts1506.4%
U.S. Total10,29519.5%

Meanwhile, Maryland leads with almost 30% of the chargers in the state that offer a minimum of 30 minutes of free charging. On the other hand, Massachusetts is the stingiest state of the top 10, with only 6% of charging stations (150 total) in the state offering free charging for electric vehicle drivers.

The States with the Best DC Fast Charger Availability

While free EV chargers are great, having access to fast chargers can matter just as much, depending on how much you value your time. Most EV drivers across the U.S. will have access to level 2 chargers, with more than 86% of charging stations in the country having level 2 chargers available.

Although level 2 charging (4-10 hours from empty to full charge) beats the snail’s pace of level 1 charging (40-50 hours from empty to full charge), between busy schedules and many charging stations that are only free for the first 30 minutes, DC fast charger availability is almost a necessity.

Direct current fast chargers can charge an electric vehicle from empty to 80% in 20-60 minutes but are only available at 12% of America’s EV charging stations today.

RankStateNumber of stations with DC fast charger availableShare of DC fast charger available stations in stateShare of free and DC fast charger available stations in state
1California1,75611.6%0.7%
2Florida36012.6%1.1%
3Texas27611.4%1.2%
4Colorado24314.1%1.1%
5New York2347.6%0.8%
6Washington23212.8%1.1%
7Georgia22814.3%1.4%
8Maryland22316.4%2.7%
9Pennsylvania13410.6%1.0%
10Massachusetts1345.8%0.2%
U.S. Total6,54012.4%0.9%

Just like free stations, Maryland leads the top 10 states in having the highest share of DC fast chargers at 16%. While Massachusetts was the worst state for DC charger availability at 6%, the state of New York was second-worst at 8% despite its large number of chargers overall. All other states in the top 10 have DC chargers available in at least one in 10 charging stations.

As for the holy grail of charging stations, with free charging and DC fast charger availability, almost 1% of the country’s charging stations are there. So if you’re hoping for free and DC fast charging, the chances in most states are around one in 100.

The Future of America’s EV Charging Infrastructure

As America works towards Biden’s goal of having half of all new vehicles sold in 2030 be zero-emissions vehicles (battery electric, plug-in hybrid electric, or fuel cell electric), charging infrastructure across the nation is essential in improving accessibility and convenience for drivers.

The Biden administration has given early approval to 35 states’ EV infrastructure plans, granting them access to $900 million in funding as part of the $5 billion National Electric Vehicle Infrastructure (NEVI) Formula Program set to be distributed over the next five years.

Along with this program, a $2.5 billion Discretionary Grant Program aims to increase EV charging access in rural, undeserved, and overburdened communities, along with the Inflation Reduction Act’s $3 billion dedicated to supporting access to EV charging for economically disadvantaged communities.

With more than $10 billion being invested into EV charging infrastructure over the next five years and more than half the sum focused on communities with poor current access, charger availability across America is set to continue improving in the coming years.

Click for Comments

Electrification

Visualized: What is the Cost of Electric Vehicle Batteries?

The cost of electric vehicle batteries can vary based on size and chemical composition. Here are the battery costs of six popular EV models.

Published

on

The Cost of EV's Battery

What is the Cost of Electric Vehicle Batteries?

The cost of an electric vehicle (EV) battery pack can vary depending on composition and chemistry.

In this graphic, we use data from Benchmark Minerals Intelligence to showcase the different costs of battery cells on popular electric vehicles.

Size Matters

Some EV owners are taken by surprise when they discover the cost of replacing their batteries.

Depending on the brand and model of the vehicle, the cost of a new lithium-ion battery pack might be as high as $25,000:

VehicleBattery TypeBattery CapacityBattery CostTotal Cost of EV
2025 Cadillac Escalade IQNickel Cobalt Manganese Aluminum (NCMA)200 kWh$22,540$130,000
2023 Tesla Model SNickel Cobalt Aluminum (NCA)100 kWh$12,030$88,490
2025 RAM 1500 REVNickel Cobalt Manganese (NCM)229 kWh$25,853$81,000
2022 Rivian Delivery VanLithium Iron phosphate (LFP)135 kWh$13,298$52,690
2023 Ford MustangLithium Iron Phosphate (LFP)70 kWh$6,895$43,179
2023 VW ID.4Nickel Cobalt Manganese (NCM622)62 kWh$8,730$37,250

The price of an EV battery pack can be shaped by various factors such as raw material costs, production expenses, packaging complexities, and supply chain stability. One of the main factors is chemical composition.

Graphite is the standard material used for the anodes in most lithium-ion batteries.

However, it is the mineral composition of the cathode that usually changes. It includes lithium and other minerals such as nickel, manganese, cobalt, or iron. This specific composition is pivotal in establishing the battery’s capacity, power, safety, lifespan, cost, and overall performance.

Lithium nickel cobalt aluminum oxide (NCA) battery cells have an average price of $120.3 per kilowatt-hour (kWh), while lithium nickel cobalt manganese oxide (NCM) has a slightly lower price point at $112.7 per kWh. Both contain significant nickel proportions, increasing the battery’s energy density and allowing for longer range.

At a lower cost are lithium iron phosphate (LFP) batteries, which are cheaper to make than cobalt and nickel-based variants. LFP battery cells have an average price of $98.5 per kWh. However, they offer less specific energy and are more suitable for standard- or short-range EVs.

Which Battery Dominates the EV Market?

In 2021, the battery market was dominated by NCM batteries, with 58% of the market share, followed by LFP and NCA, holding 21% each.

Looking ahead to 2026, the market share of LFP is predicted to nearly double, reaching 38%.

NCM is anticipated to constitute 45% of the market and NCA is expected to decline to 7%.

Continue Reading

Electrification

How Clean is the Nickel and Lithium in a Battery?

This graphic from Wood Mackenzie shows how nickel and lithium mining can significantly impact the environment, depending on the processes used.

Published

on

How clean is the lithium and nickel in battery

How Clean is the Nickel and Lithium in a Battery?

The production of lithium (Li) and nickel (Ni), two key raw materials for batteries, can produce vastly different emissions profiles.

This graphic from Wood Mackenzie shows how nickel and lithium mining can significantly impact the environment, depending on the processes used for extraction.

Nickel Emissions Per Extraction Process

Nickel is a crucial metal in modern infrastructure and technology, with major uses in stainless steel and alloys. Nickel’s electrical conductivity also makes it ideal for facilitating current flow within battery cells.

Today, there are two major methods of nickel mining:

  • From laterite deposits, which are predominantly found in tropical regions. This involves open-pit mining, where large amounts of soil and overburden need to be removed to access the nickel-rich ore.

  • From sulphide ores, which involves underground or open-pit mining of ore deposits containing nickel sulphide minerals.

Although nickel laterites make up 70% of the world’s nickel reserves, magmatic sulphide deposits produced 60% of the world’s nickel over the last 60 years.

Compared to laterite extraction, sulphide mining typically emits fewer tonnes of CO2 per tonne of nickel equivalent as it involves less soil disturbance and has a smaller physical footprint:

Ore TypeProcessProductTonnes of CO2 per tonne of Ni equivalent
SulphidesElectric / Flash SmeltingRefined Ni / Matte6
LateriteHigh Pressure Acid Leach (HPAL)Refined Ni / Mixed Sulpide Precipitate / Mixed Hydroxide Precipitate13.7
LateriteBlast Furnace / RKEFNickel Pig Iron / Matte45.1

Nickel extraction from laterites can impose significant environmental impacts, such as deforestation, habitat destruction, and soil erosion.

Additionally, laterite ores often contain high levels of moisture, requiring energy-intensive drying processes to prepare them for further extraction. After extraction, the smelting of laterites requires a significant amount of energy, which is largely sourced from fossil fuels.

Although sulphide mining is cleaner, it poses other environmental challenges. The extraction and processing of sulphide ores can release sulphur compounds and heavy metals into the environment, potentially leading to acid mine drainage and contamination of water sources if not managed properly.

In addition, nickel sulphides are typically more expensive to mine due to their hard rock nature.

Lithium Emissions Per Extraction Process

Lithium is the major ingredient in rechargeable batteries found in phones, hybrid cars, electric bikes, and grid-scale storage systems. 

Today, there are two major methods of lithium extraction:

  • From brine, pumping lithium-rich brine from underground aquifers into evaporation ponds, where solar energy evaporates the water and concentrates the lithium content. The concentrated brine is then further processed to extract lithium carbonate or hydroxide.

  • Hard rock mining, or extracting lithium from mineral ores (primarily spodumene) found in pegmatite deposits. Australia, the world’s leading producer of lithium (46.9%), extracts lithium directly from hard rock.

Brine extraction is typically employed in countries with salt flats, such as Chile, Argentina, and China. It is generally considered a lower-cost method, but it can have environmental impacts such as water usage, potential contamination of local water sources, and alteration of ecosystems.

The process, however, emits fewer tonnes of CO2 per tonne of lithium-carbonate-equivalent (LCE) than mining:

SourceOre TypeProcessTonnes of CO2
per tonne of LCE
MineralSpodumeneMine9
Mineral Petalite, lepidolite and othersMine 8
BrineN/AExtraction/Evaporation3

Mining involves drilling, blasting, and crushing the ore, followed by flotation to separate lithium-bearing minerals from other minerals. This type of extraction can have environmental impacts such as land disturbance, energy consumption, and the generation of waste rock and tailings.

Sustainable Production of Lithium and Nickel

Environmentally responsible practices in the extraction and processing of nickel and lithium are essential to ensure the sustainability of the battery supply chain.

This includes implementing stringent environmental regulations, promoting energy efficiency, reducing water consumption, and exploring cleaner technologies. Continued research and development efforts focused on improving extraction methods and minimizing environmental impacts are crucial.

Sign up to Wood Mackenzie’s Inside Track to learn more about the impact of an accelerated energy transition on mining and metals.

 

×
Continue Reading

Subscribe

Popular