Connect with us

Electrification

Interactive: EV Charging Stations Across the U.S. Mapped

Published

on

View the non-interactive version of this map here.

Electric Vehicle Charging Stations Across America: Mapped

As the electric vehicle market continues to expand, having enough EV charging stations is essential to enable longer driving ranges and lower wait times at chargers.

Currently, the U.S. has about 140,000 public EV chargers distributed across almost 53,000 charging stations, which are still far outnumbered by the 145,000 gas fueling stations in the country.

This graphic maps out EV charging stations across the U.S. using data from the National Renewable Energy Lab. The map has interactive features when viewed on desktop, showing pricing structures and the connector types when hovering over a charging station, along with filtering options.

Which States Lead in EV Charging Infrastructure?

As seen in the map above, most electric vehicle charging stations in the U.S. are located on the west and east coasts of the nation, while the Midwest strip is fairly barren aside from the state of Colorado.

California has the highest number of EV charging stations at 15,182, making up an impressive 29% of all charging stations in America. In fact, the Golden State has nearly double the chargers of the following three states, New York (3,085), Florida (2,858), and Texas (2,419) combined.

RankStateNumber of charging stationsShare of U.S. charging stations
1California15,18228.7%
2New York3,0855.8%
3Florida2,8585.4%
4Texas2,4194.6%
5Massachusetts2,3284.4%
6Washington1,8103.4%
7Colorado1,7183.2%
8Georgia1,5963.0%
9Maryland1,3582.6%
10Pennsylvania1,2602.4%
U.S. Total52,889100.0%

It’s no surprise the four top states by GDP have the highest number of EV chargers, and California’s significant lead is also unsurprising considering its ambition to completely phase out the sale of new gas vehicles by 2035.

The Best States for EV Charging Speeds and Cost

While having many charging stations distributed across a state is important, two other factors determine charging convenience: cost and charger level availability.

EV charger pricing structures and charger level availability across the nation are a Wild West with no set rules and few clear expectations.

Finding Free Electric Vehicle Chargers Across States

Generous electric vehicle charging locations will offer unlimited free charging or a time cap between 30 minutes and 4 hours of free charging before payment is required. Some EV charging stations located in parking structures simply require a parking fee, while others might have a flat charging fee per session, charge by kWh consumed, or have an hourly rate.

While California leads in terms of the raw amount of free chargers available in the state, it’s actually the second worst in the top 10 states when it comes to the share of chargers, at only 11% of them free for 30 minutes or more.

RankState nameNumber of free charging stationsShare of free charging stations in the state
1California1,71711.3%
2Florida67323.6%
3New York66221.5%
4Texas60625.1%
5Maryland39929.4%
6Georgia36022.6%
7Washington35819.8%
8Pennsylvania31825.2%
9Colorado27315.9%
10Massachusetts1506.4%
U.S. Total10,29519.5%

Meanwhile, Maryland leads with almost 30% of the chargers in the state that offer a minimum of 30 minutes of free charging. On the other hand, Massachusetts is the stingiest state of the top 10, with only 6% of charging stations (150 total) in the state offering free charging for electric vehicle drivers.

The States with the Best DC Fast Charger Availability

While free EV chargers are great, having access to fast chargers can matter just as much, depending on how much you value your time. Most EV drivers across the U.S. will have access to level 2 chargers, with more than 86% of charging stations in the country having level 2 chargers available.

Although level 2 charging (4-10 hours from empty to full charge) beats the snail’s pace of level 1 charging (40-50 hours from empty to full charge), between busy schedules and many charging stations that are only free for the first 30 minutes, DC fast charger availability is almost a necessity.

Direct current fast chargers can charge an electric vehicle from empty to 80% in 20-60 minutes but are only available at 12% of America’s EV charging stations today.

RankStateNumber of stations with DC fast charger availableShare of DC fast charger available stations in stateShare of free and DC fast charger available stations in state
1California1,75611.6%0.7%
2Florida36012.6%1.1%
3Texas27611.4%1.2%
4Colorado24314.1%1.1%
5New York2347.6%0.8%
6Washington23212.8%1.1%
7Georgia22814.3%1.4%
8Maryland22316.4%2.7%
9Pennsylvania13410.6%1.0%
10Massachusetts1345.8%0.2%
U.S. Total6,54012.4%0.9%

Just like free stations, Maryland leads the top 10 states in having the highest share of DC fast chargers at 16%. While Massachusetts was the worst state for DC charger availability at 6%, the state of New York was second-worst at 8% despite its large number of chargers overall. All other states in the top 10 have DC chargers available in at least one in 10 charging stations.

As for the holy grail of charging stations, with free charging and DC fast charger availability, almost 1% of the country’s charging stations are there. So if you’re hoping for free and DC fast charging, the chances in most states are around one in 100.

The Future of America’s EV Charging Infrastructure

As America works towards Biden’s goal of having half of all new vehicles sold in 2030 be zero-emissions vehicles (battery electric, plug-in hybrid electric, or fuel cell electric), charging infrastructure across the nation is essential in improving accessibility and convenience for drivers.

The Biden administration has given early approval to 35 states’ EV infrastructure plans, granting them access to $900 million in funding as part of the $5 billion National Electric Vehicle Infrastructure (NEVI) Formula Program set to be distributed over the next five years.

Along with this program, a $2.5 billion Discretionary Grant Program aims to increase EV charging access in rural, undeserved, and overburdened communities, along with the Inflation Reduction Act’s $3 billion dedicated to supporting access to EV charging for economically disadvantaged communities.

With more than $10 billion being invested into EV charging infrastructure over the next five years and more than half the sum focused on communities with poor current access, charger availability across America is set to continue improving in the coming years.

Click for Comments

Electrification

Charted: Battery Capacity by Country (2024-2030)

This graphic compares battery capacity by cathode type across major countries.

Published

on

This graphic, using exclusive data from Benchmark Mineral Intelligence, compares battery capacity by cathode type across major countries.

Charted: Battery Capacity by Country (2024-2030)

As the global energy transition accelerates, battery demand continues to soar—along with competition between battery chemistries.

According to the International Energy Agency, in 2024, electric vehicle sales rose by 25% to 17 million, pushing annual battery demand past 1 terawatt-hour (TWh)—a historic milestone.

This graphic, using exclusive data from Benchmark Mineral Intelligence (as of February 2025), compares battery capacity by cathode type across major countries. It focuses on the two dominant chemistries: Nickel Cobalt Manganese (NCM) and Lithium Iron Phosphate (LFP).

Understanding Cathode Chemistries

Batteries store and release energy through the movement of lithium ions. The cathode—a key electrode—determines a battery’s cost, range, and thermal performance.

NCM

  • Offers higher energy density and better performance in cold climates, but is more expensive and has a shorter lifespan.

LFP

  • Known for its lower cost and improved thermal stability, though it delivers a shorter driving range and adds weight.

As of now, LFP cathodes make up 40% of the EV market in terms of gigawatt-hours (GWh).

Beyond passenger vehicles, LFP batteries are widely used in systems that undergo frequent charging and discharging—like residential and grid-scale energy storage—where added weight isn’t a major concern. They’re also ideal for daily-use applications such as buses and delivery fleets.

Regional Market Trends

In China, LFP is already dominant, accounting for 64% of the market in 2024. By 2030, that figure is projected to grow to 76%, driven by a focus on affordability in the world’s largest EV market. Notably, over 70% of all EV batteries ever manufactured have been produced in China, contributing to deep manufacturing expertise.

Region/CountryYear% NCM% LFP% Other
China202427%64%8%
North America202471%7%22%
Europe202469%8%24%
South Korea202462%4%35%
Japan202458%0%42%

Outside of China, NCM remains the leading chemistry due to consumer demand for longer range and premium performance.

North America – NCM holds a 71% share in 2024, with a slight decline to 69% forecasted for 2030.

Europe – NCM’s share is expected to grow from 69% in 2024 to 71% by 2030.

South Korea and Japan – Both countries show similar trends, with NCM gaining share as LFP remains limited or absent.

Continue Reading

Electrification

Top 20 Countries by Battery Storage Capacity

China holds about two-thirds of global BESS capacity.

Published

on

This graphic highlights the top 20 battery storage capacity markets by current and planned grid capacity in gigawatt hour (GWh).

Visualizing the Top 20 Countries by Battery Storage Capacity

Over the past three years, the Battery Energy Storage System (BESS) market has been the fastest-growing segment of global battery demand. These systems store electricity using batteries, helping stabilize the grid, store renewable energy, and provide backup power.

In 2024, the market grew by 52%, compared to 25% growth in the EV battery market. Among the top companies in the BESS market are technology giants such as Samsung, LG, BYD, Panasonic, and Tesla.

This graphic highlights the top 20 BESS markets by current and planned grid capacity in gigawatt hour (GWh), based on exclusive data from Rho Motion as of February 2025.

Chinese Dominance

As with the EV market, China currently dominates global BESS deployments, accounting for approximately two-thirds of installed capacity. However, other markets are expected to grow significantly in the coming years, driven by low-cost lithium-ion cells and the expansion of renewable energy capacity.

Currently, China has 215.5 GWh of installed capacity and an ambitious 505.6 GWh project pipeline. The U.S. follows with 82.1 GWh installed and 162.5 GWh planned.

Top BESS MarketsInstalled 2024 (GWh)2027P
🇨🇳 China215.5721.2
🇺🇸 USA82.1244.6
🇬🇧 UK7.556.3
🇦🇺 Australia5.6102.9
🇨🇱 Chile3.841.0
🇮🇹 Italy2.27.9
🇸🇦 Saudi Arabia1.332.4
🇿🇦 South Africa1.39.4
🇮🇪 Ireland1.62.5
🇵🇭 Philippines1.06.1
🇯🇵 Japan1.05.0
🇩🇪 Germany1.06.2
🇰🇷 South Korea1.11.3
🇮🇱 Israel0.84.6
🇫🇷 France0.61.8
🇧🇪 Belgium0.75.3
🇺🇿 Uzbekistan0.65.9
🇸🇪 Sweden0.61.5
🇮🇳 India0.54.3
🇨🇦 Canada0.318.3

Canada is projected to be the fastest-growing market through 2027, with its cumulative capacity hitting 18.3 GWh—a significant increase from its current 0.3 GWh capacity.

Countries such as Australia (97.3 GWh pipeline), Saudi Arabia (31.1 GWh), and Chile (37.2 GWh) have relatively small current installations but plan substantial expansions. Within Europe, the UK leads with 7.5 GWh of installed capacity and 48.7 GWh in the pipeline, while Italy, Germany, France, and Belgium show steady but more modest growth.

Despite being technological leaders, Japan (4 GWh pipeline) and South Korea (0.3 GWh) have relatively low planned BESS expansions.

According to Rho Motion, China will remain the dominant player in 2027, but its share of the total market is expected to decline to just over 50% based on the current project pipeline.

While the BESS market is expanding, challenges remain, including grid connection bottlenecks and the development of revenue streams in emerging markets.

Continue Reading

Subscribe

Popular