Connect with us

Electrification

The Road to EV Adoption: Fast Lanes and Potholes

Published

on

The following content is sponsored by Rock Tech Lithium.

The Road to EV Adoption: Fast Lanes and Potholes

Electric vehicles (EVs) are a key piece of the clean energy puzzle.

However, the road to electrification is influenced by various factors. While some are helping speed up the switch to EVs, others are slowing it down.

The above infographic from Rock Tech Lithium outlines the fast lanes accelerating mainstream EV adoption, and the potholes slowing it down.

The Fast Lanes Accelerating EV Adoption

From government policies to falling battery prices, a number of factors are putting EVs in the fast lane to consumer adoption.

Factor #1:

Promoting Policies

The shift to a clean energy future is slowly moving from a goal to a reality.

Governments around the world have made automobile electrification a key part of public policy. More than 20 countries are targeting a complete phase-out of vehicles that emit greenhouse gases over the next two decades. Furthermore, 35 countries have pledged for net-zero economies by 2050, where EVs will play a key role.

As an example, here’s a recent tweet that U.S. President Joe Biden wrote before signing an executive order to make 50% of the U.S. auto fleet electric by 2030:

“The future of the auto industry is electric—and made in America.”

—President Biden on Twitter

Given the increasing importance of EVs, it’s no surprise that governments are not only promoting auto electrification but also incentivizing it.

Factor #2:

Consumer Awareness

The rapid growth of the EV market is partly due to consumers that are choosing to go electric.

Rising awareness around the risks of climate change as well as vehicle improvements from EV manufacturers is spurring EV adoption among consumers. Between 2015 and 2020, consumer spending on EVs increased by 561%, up from $18 billion to $119 billion.

As more consumers switch to EVs, the market will continue to grow.

Factor #3:

More Models

EV manufacturers are recognizing the need for a wider variety of vehicles to meet the needs of different consumers.

The number of available EV models has increased from 86 in 2015 to over 360 in 2020, and thanks to recent announcements from the auto industry, this trend is likely to extend over the next decade.

Company# of New EV Models AnnouncedYear
Volkswagen752025
Ford402022
GM302025
Hyundai-Kia1292025
BMW252023
Renault-Nissan2202022
Toyota152025
Total234N/A

1Hyundai is the parent company of Kia Motors.
2Refers to the Renault-Nissan-Mitsubishi Alliance.
Source: IEA

With more models available, consumers have a wider variety of cars to choose from, reducing the barriers to EV adoption.

Factor #4:

Falling Battery Prices

Batteries are the most expensive and important components of EVs.

Improvements in battery technology, in addition to expanding production, have driven down the cost of EV batteries. As battery costs fall, so do EV prices, bringing EVs closer to price-parity with gas-powered cars.

YearBattery Pack Price ($/kWh)% Price Drop Since 2010
2010$1,1910%
2011$92422%
2012$72639%
2013$66844%
2014$59250%
2015$38468%
2016$29575%
2017$22181%
2018$18185%
2019$15787%
2020$13789%

Source: BloombergNEF

According to BloombergNEF, at the battery pack price point of $100/kWh, EV prices will become competitive with gas-powered cars, providing a boost to electrification.

All of the above factors are playing a major role in accelerating the EV transition. So what’s slowing it down?

The Potholes Slowing Down EV Adoption

Although the EV market is growing exponentially, it’s still in its early days, with various obstacles to overcome on the way to mainstream penetration.

Pothole #1:

The Supply of Battery Metals

EV batteries rely on the properties of various battery metals to power EVs. In fact, a single EV contains around 207 kg of metals.

As EV adoption grows, the demand for these critical minerals is expected to reach unprecedented highs. In turn, this could result in supply shortages for metals like lithium, cobalt, and graphite, potentially slowing down the growth of the EV market.

To avoid potential shortages, EV manufacturers like Tesla and Volkswagen are vertically integrating to mine their own metals, while governments work to build domestic and independent metal supply chains.

Pothole #2:

Charging Infrastructure

With more EVs on the roads, drivers need more places to plug in and recharge.

However, most countries are lagging behind in the installation of public chargers. The global average ratio of public chargers to EV stock is less than 0.15. This means that on average, there are less than 3 chargers for every 20 EVs.

But there are signs of optimism. Global charging infrastructure has doubled since 2017, and governments are incentivizing charger installations with subsidies and tax rebates.

Pothole #3:

Charging Times

While filling up gas tanks takes less than five minutes, it can take up to eight hours to fully charge an EV battery.

Fast chargers that use direct current can fully charge EVs in a couple of hours, but they’re more expensive to install. However, the majority of publicly available chargers are slow, making it inconvenient for drivers to charge on the go.

As charging technology improves, faster chargers are being developed to boost charge times. According to Bloomberg, new ultra-fast chargers can fully charge EVs in less than 30 minutes. Furthermore, the market share of fast chargers is expected to grow from 15% today to 27% by 2030.

Pothole #4:

Range Anxiety

Compared to gas-powered vehicles, EVs do not go the distance yet.

Limited driving ranges are known to cause “range anxiety”—the fear of running out of power—among EV drivers, presenting a hurdle for mainstream EV adoption. Additionally, the lack of charging infrastructure reinforces the problem of limited ranges.

However, consistent improvements in battery technology are resulting in longer driving ranges. Between 2015 and 2020, the average range for battery EVs increased by 60%. With further technological improvements, extended ranges will allow EVs be compete more aggressively with their gas-guzzling counterparts.

The Decade of the Electric Vehicle

The EV market is growing at a remarkable rate. EV makers sold around three million vehicles in 2020, up 155% from just over one million vehicles sold in 2017.

With several factors driving EV adoption and stakeholders working to overcome the industry’s obstacles, mainstream adoption of EVs is on the horizon.

Click for Comments

Electrification

The Key Minerals in an EV Battery

Which key minerals power the lithium-ion batteries in electric vehicles?

Published

on

minerals in an EV battery infographic

Breaking Down the Key Minerals in an EV Battery

Inside practically every electric vehicle (EV) is a lithium-ion battery that depends on several key minerals that help power it.

Some minerals make up intricate parts within the cell to ensure the flow of electrical current. Others protect it from accidental damage on the outside.

This infographic uses data from the European Federation for Transport and Environment to break down the key minerals in an EV battery. The mineral content is based on the ‘average 2020 battery’, which refers to the weighted average of battery chemistries on the market in 2020.

The Battery Minerals Mix

The cells in the average battery with a 60 kilowatt-hour (kWh) capacity—the same size that’s used in a Chevy Bolt—contained roughly 185 kilograms of minerals. This figure excludes materials in the electrolyte, binder, separator, and battery pack casing.

MineralCell PartAmount Contained in the Avg. 2020 Battery (kg)% of Total
GraphiteAnode52kg28.1%
AluminumCathode, Casing, Current collectors35kg18.9%
NickelCathode29kg15.7%
CopperCurrent collectors20kg10.8%
SteelCasing20kg10.8%
ManganeseCathode10kg5.4%
CobaltCathode8kg4.3%
LithiumCathode6kg3.2%
IronCathode5kg2.7%
TotalN/A185kg100%

The cathode contains the widest variety of minerals and is arguably the most important and expensive component of the battery. The composition of the cathode is a major determinant in the performance of the battery, with each mineral offering a unique benefit.

For example, NMC batteries, which accounted for 72% of batteries used in EVs in 2020 (excluding China), have a cathode composed of nickel, manganese, and cobalt along with lithium. The higher nickel content in these batteries tends to increase their energy density or the amount of energy stored per unit of volume, increasing the driving range of the EV. Cobalt and manganese often act as stabilizers in NMC batteries, improving their safety.

Altogether, materials in the cathode account for 31.3% of the mineral weight in the average battery produced in 2020. This figure doesn’t include aluminum, which is used in nickel-cobalt-aluminum (NCA) cathode chemistries, but is also used elsewhere in the battery for casing and current collectors.

Meanwhile, graphite has been the go-to material for anodes due to its relatively low cost, abundance, and long cycle life. Since the entire anode is made up of graphite, it’s the single-largest mineral component of the battery. Other materials include steel in the casing that protects the cell from external damage, along with copper, used as the current collector for the anode.

Minerals Bonded by Chemistry

There are several types of lithium-ion batteries with different compositions of cathode minerals. Their names typically allude to their mineral breakdown.

For example:

  • NMC811 batteries cathode composition:
    80% nickel
    10% manganese
    10% cobalt
  • NMC523 batteries cathode composition:
    50% nickel
    20% manganese
    30% cobalt

Here’s how the mineral contents differ for various battery chemistries with a 60kWh capacity:

battery minerals by chemistry

With consumers looking for higher-range EVs that do not need frequent recharging, nickel-rich cathodes have become commonplace. In fact, nickel-based chemistries accounted for 80% of the battery capacity deployed in new plug-in EVs in 2021.

Lithium iron phosphate (LFP) batteries do not use any nickel and typically offer lower energy densities at better value. Unlike nickel-based batteries that use lithium hydroxide compounds in the cathode, LFP batteries use lithium carbonate, which is a cheaper alternative. Tesla recently joined several Chinese automakers in using LFP cathodes for standard-range cars, driving the price of lithium carbonate to record highs.

The EV battery market is still in its early hours, with plenty of growth on the horizon. Battery chemistries are constantly evolving, and as automakers come up with new models with different characteristics, it’ll be interesting to see which new cathodes come around the block.

Continue Reading

Electrification

Charted: Home Heating Systems in the U.S.

Which fuels do U.S. home heating systems use?

Published

on

home heating systems in the U.S. broken down by share of fuel sources

Charted: Home Heating Systems in the U.S.

Fossil fuel combustion for the heating of commercial and residential buildings accounts for roughly 13% of annual greenhouse gas emissions in the United States.

Decarbonizing the U.S. economy requires a switch from fossil fuel-combusting heating solutions to renewable energy sources that generate electricity.

Currently, the majority of new homes in the U.S. still combust natural gas for heating through forced-air furnaces or boilers. Just like cars need to be electric, homes will need to switch to electricity-powered heating systems that use renewable energy sources.

The graphic above uses census data to break down the different heating systems and fuels that are warming the 911,000 single-family homes built in the U.S. in 2020.

Types of Home Heating Systems

Most American homes use one of the following three heating systems:

  • Forced-air Furnaces: These typically have a burner in a furnace that is fueled by natural gas. A blower forces cold air through a heat exchanger which warms it up before it flows through ducts that heat the home with air as the medium.
  • Heat Pumps: The most common type of heat pumps are air-source heat pumps, which collect hot air from outside the home and concentrate it before pumping it through ducts that heat the air inside. They are usually powered by electricity. During warmer months, heat pumps can reverse themselves to cool the home, transferring hot air from the inside to the outdoors.
  • Hot Water/Steam: These systems typically work by boiling water (or generating steam) to the appropriate temperature using gas and sending it through a home’s pipes to radiators that heat the air.

How Home Heating Fuels Have Changed

U.S. home heating has been going through a transition over the last two decades. Electricity has steadily been replacing gas and biofuel/wood-powered home heating systems for new homes, and powers almost half of the heating systems in single-family homes built in 2020.

Here’s how the share of heat sources for new houses changed between 2000 and 2020:

Fuel2000 % of Heating for New Homes2020 % of Heating for New Homes
Gas70%55%
Electricity27%45%
Other4%1%

Percentages may not add to 100 due to rounding.

While electricity’s share has grown since 2000, most American homes are still heated with gas largely because of the fossil fuel’s affordability.

According to the U.S. Energy Information Administration (EIA), households relying on gas for space heating are expected to spend an average of $746 over the winter months, compared to $1,268 for electricity, and $1,734 for heating oil.

Heating in Newly-Built Houses Today

Of the 911,000 new single-family homes, 538,000 houses installed forced-air furnaces. Of these, 83% or nearly 450,000 homes used gas as the primary heating source, with 16% opting for electrified furnaces. By contrast, 88% of the 353,000 homes that installed heat pumps relied on electricity.

Here’s how the heating systems and fuels break down for single-family homes built in 2020:

System UsedHouses Built in 2020% Powered by Gas% Powered by Electricity% Powered by Other
Forced-Air Furnace538,00083%16%<0.5%
Heat Pump353,00012%88%0%
Hot Water/Steam8,00089%5%7%
Other/None12,00012%41%47%

Percentages may not add to 100 due to rounding.

Fewer than 1% of new single-family homes used hot water or steam systems, and the majority of those that did relied on gas as the primary fuel. Around 1.3% of new homes used other systems like electric baseboard heaters, smaller space heaters, panel heaters, or radiators.

While gas remains the dominant heating source today, efforts to decarbonize the U.S. economy could further prompt a shift towards electricity-based heating systems, with electric heat pumps likely taking up a larger piece of the pie.

Continue Reading

Subscribe

Latest News

The latest news from our sponsors:

Popular