Energy Shift
Rare Earth Elements: Where in the World Are They?
Rare Earths Elements: Where in the World Are They?
Rare earth elements are a group of metals that are critical ingredients for a greener economy, and the location of the reserves for mining are increasingly important and valuable.
This infographic features data from the United States Geological Society (USGS) which reveals the countries with the largest known reserves of rare earth elements (REEs).
What are Rare Earth Metals?
REEs, also called rare earth metals or rare earth oxides, or lanthanides, are a set of 17 silvery-white soft heavy metals.
The 17 rare earth elements are: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), scandium (Sc), and yttrium (Y).
Scandium and yttrium are not part of the lanthanide family, but end users include them because they occur in the same mineral deposits as the lanthanides and have similar chemical properties.
The term “rare earth” is a misnomer as rare earth metals are actually abundant in the Earth’s crust. However, they are rarely found in large, concentrated deposits on their own, but rather among other elements instead.
Rare Earth Elements, How Do They Work?
Most rare earth elements find their uses as catalysts and magnets in traditional and low-carbon technologies. Other important uses of rare earth elements are in the production of special metal alloys, glass, and high-performance electronics.
Alloys of neodymium (Nd) and samarium (Sm) can be used to create strong magnets that withstand high temperatures, making them ideal for a wide variety of mission critical electronics and defense applications.
End-use | % of 2019 Rare Earth Demand |
---|---|
Permanent Magnets | 38% |
Catalysts | 23% |
Glass Polishing Powder and Additives | 13% |
Metallurgy and Alloys | 8% |
Battery Alloys | 9% |
Ceramics, Pigments and Glazes | 5% |
Phosphors | 3% |
Other | 4% |
The strongest known magnet is an alloy of neodymium with iron and boron. Adding other REEs such as dysprosium and praseodymium can change the performance and properties of magnets.
Hybrid and electric vehicle engines, generators in wind turbines, hard disks, portable electronics and cell phones require these magnets and elements. This role in technology makes their mining and refinement a point of concern for many nations.
For example, one megawatt of wind energy capacity requires 171 kg of rare earths, a single U.S. F-35 fighter jet requires about 427 kg of rare earths, and a Virginia-class nuclear submarine uses nearly 4.2 tonnes.
Global Reserves of Rare Earth Minerals
China tops the list for mine production and reserves of rare earth elements, with 44 million tons in reserves and 140,000 tons of annual mine production.
While Vietnam and Brazil have the second and third most reserves of rare earth metals with 22 million tons in reserves and 21 million tons, respectively, their mine production is among the lowest of all the countries at only 1,000 tons per year each.
Country | Mine Production 2020 | Reserves | % of Total Reserves |
---|---|---|---|
China | 140,000 | 44,000,000 | 38.0% |
Vietnam | 1,000 | 22,000,000 | 19.0% |
Brazil | 1,000 | 21,000,000 | 18.1% |
Russia | 2,700 | 12,000,000 | 10.4% |
India | 3,000 | 6,900,000 | 6.0% |
Australia | 17,000 | 4,100,000 | 3.5% |
United States | 38,000 | 1,500,000 | 1.3% |
Greenland | - | 1,500,000 | 1.3% |
Tanzania | - | 890,000 | 0.8% |
Canada | - | 830,000 | 0.7% |
South Africa | - | 790,000 | 0.7% |
Other Countries | 100 | 310,000 | 0.3% |
Burma | 30,000 | N/A | N/A |
Madagascar | 8,000 | N/A | N/A |
Thailand | 2,000 | N/A | N/A |
Burundi | 500 | N/A | N/A |
World Total | 243,300 | 115,820,000 | 100% |
While the United States has 1.5 million tons in reserves, it is largely dependent on imports from China for refined rare earths.
Ensuring a Global Supply
This tight control of the supply of these important metals has the world searching for their own supplies. With the start of mining operations in other countries, China’s share of global production has fallen from 92% in 2010 to 58%< in 2020. However, China has a strong foothold in the supply chain and produced 85% of the world’s refined rare earths in 2020.
China awards production quotas to only six state-run companies:
- China Minmetals Rare Earth Co
- Chinalco Rare Earth & Metals Co
- Guangdong Rising Nonferrous
- China Northern Rare Earth Group
- China Southern Rare Earth Group
- Xiamen Tungsten
As the demand for REEs increases, the world will need tap these reserves. This graphic could provide clues as to the next source of rare earth elements.
Energy Shift
How Many New Mines Are Needed for the Energy Transition?
Copper and lithium will require the highest number of new mines.

How Many New Mines Are Needed for the Energy Transition?
Nearly 300 Mines
According to Benchmark Mineral Intelligence, meeting global battery demand by 2030 would require 293 new mines or plants.
Mineral | 2024 Supply (t) | 2030 Demand (t) | Supply Needed (t) | No. of Mines/Plants | Type |
---|---|---|---|---|---|
Lithium | 1,181,000 | 2,728,000 | 1,547,000 | 52 | Mine |
Cobalt | 272,000 | 401,000 | 129,000 | 26 | Mine |
Nickel | 3,566,000 | 4,949,000 | 1,383,000 | 28 | Mine |
Natural Graphite | 1,225,000 | 2,933,000 | 1,708,000 | 31 | Mine |
Synthetic Graphite | 1,820,000 | 2,176,000 | 356,000 | 12 | Plant |
Manganese | 90,000 | 409,000 | 319,000 | 21 | Plant |
Purified Phosphoric Acid | 6,493,000 | 9,001,000 | 2,508,000 | 33 | Plant |
Copper | 22,912,000 | 26,576,000 | 3,664,000 | 61 | Mine |
Rare Earths | 83,711 | 116,663 | 32,952 | 29 | Mine |
Copper, used in wires and other applications, and lithium, essential for batteries, will require the most significant number of new mines.
Manganese production would need to increase more than fourfold to meet anticipated demand.
Not an Easy Task
Building new mines is one of the biggest challenges in reaching the expected demand.
After discovery and exploration, mineral projects must go through a lengthy process of research, permitting, and funding before becoming operational.
In the U.S., for instance, developing a new mine can take 29 years.
In contrast, Ghana, the Democratic Republic of Congo, and Laos have some of the shortest development times in the world, at roughly 10 to 15 years.
Energy Shift
Visualizing Europe’s Dependence on Chinese Resources
Europe depends entirely on China for heavy rare earth elements, critical for technologies such as hybrid cars and fiber optics.

Visualizing Europe’s Dependence on Chinese Resources
This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.
Despite efforts by European countries to reduce their reliance on China for critical materials, the region remains heavily dependent on Chinese resources.
This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries. Bloomberg published this data in May 2024 based on European Commission research.
China’s Dominance in Clean Energy Minerals
Europe is 100% dependent on China for heavy rare earth elements used in technologies such as hybrid cars, fiber optics, and nuclear power.
Additionally, 97% of the magnesium consumed in Europe, for uses ranging from aerospace alloys to automotive parts, comes from the Asian country.
Raw Material | Percentage Supplied by China | Usage |
---|---|---|
Heavy rare earth elements | 100% | nuclear reactors, TV screens, fiber optics |
Magnesium | 97% | Aerospace alloys, automotive parts |
Light rare earth elements | 85% | Catalysts, aircraft engines, magnets |
Lithium | 79% | Batteries, pharmaceuticals, ceramics |
Gallium | 71% | Semiconductors, LEDs, solar panels |
Scandium | 67% | Aerospace components, power generation, sports equipment |
Bismuth | 65% | Pharmaceuticals, cosmetics, low-melting alloys |
Vanadium | 62% | Steel alloys, aerospace, tools |
Baryte | 45% | Oil and gas drilling, paints, plastics |
Germanium | 45% | Fiber optics, infrared optics, electronics |
Natural graphite | 40% | Batteries, lubricants, refractory materials |
Tungsten | 32% | Cutting tools, electronics, heavy metal alloys |
Almost 80% of the lithium in electric vehicles and electronics batteries comes from China.
Assessing the Risks
The EU faces a pressing concern over access to essential materials, given the apprehension that China could “weaponize” its dominance of the sector.
One proposed solution is the EU’s Critical Raw Materials Act, which entered into force in May 2024.
The act envisions a quota of 10% of all critical raw materials consumed in the EU to be produced within the EU.
Additionally, it calls for a significant increase in recycling efforts, totaling up to 25% of annual consumption in the EU. Lastly, it sets the target of reducing dependency for any critical raw material on a single non-EU country to less than 65% by 2030.
-
Energy Shift3 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification3 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification3 years ago
Visualized: Battery Vs. Hydrogen Fuel Cell