Connect with us

Energy Shift

Forecasting U.S. Clean Energy Job Creation by State (2019-2050)

Published

on

How to Use: Click the arrows on the left/right to navigate between 2030 and 2050 job projections.

Clean Energy Jobs creation by State (2019-2050)
Clean Energy Jobs creation by State (2019-2030)
VCE-DS_Clean-Energy-By-State-2050-May-30
VCE-DS_Clean-Energy-By-State-2030-May-30
previous arrow
next arrow

The Growth of Clean Energy Jobs by State

As the world is slowly moving towards a carbon-free future, job prospects within the renewable energy industry will see a boom in the coming years. Ranging from environmental scientists to renewable energy generation technicians and engineers, clean energy jobs are growing.

Between the shuttering of coal plants and companies making efforts to use renewable sources of energy, the United States on its own could see the creation of 5 million net new jobs within the energy-supply sector, driven by clean energy.

These jobs offer a more sustainable and high-paying alternative for the current and new workforce, especially in some of the country’s highly fossil-fuel-dependent states.

Based on analysis presented by Princeton University, the above infographic visualizes the forecasted change in energy-supply jobs in every state from 2019 to 2030 and up until 2050, in a net-zero scenario.

Shift in Energy Supply Jobs by 2030: Texas on the Forefront

Between 2020 and 2021, jobs in the oil and gas sector saw a 9% decline in Texas, a reduction of more than 55,000 in the state. Despite this, Texas is still one of the largest oil and natural gas producers, employing the highest number of people.

A rapid rise in employment in the clean energy industry will compensate for this decline in fossil fuel sector jobs. Texas fossil fuel unions have also signed onto the climate action plan and vowed to create more jobs in the clean energy sector.

In the process, Texas will see nearly 135,000 net new energy-supply jobs by 2030, more than any other state.

Here’s a look at the number of forecasted net new energy-supply jobs in the rest of the country:

StateForecasted Net Change in Energy-supply Jobs (2019-2030)
Texas134,446
California73,259
Florida65,754
South Carolina55,058
Iowa46,295
Virginia43,250
New Mexico39,548
Indiana38,908
Missouri33,786
Oklahoma30,953
Nebraska30,866
Illinois30,003
New York26,063
North Carolina25,789
Kansas22,064
Colorado18,634
Washington17,272
Alabama12,977
New Jersey12,845
Minnesota12,726
Michigan12,546
Georgia12,375
Oregon11,794
Pennsylvania11,581
Massachusetts11,332
North Dakota10,319
Mississippi9,564
Louisiana7,460
Utah7,388
Idaho6,758
Maryland6,461
Connecticut6,429
Nevada6,358
Montana6,014
Ohio5,873
Kentucky5,106
Maine4,483
Arizona3,962
South Dakota3,904
Tennessee3,752
Wyoming2,458
New Hampshire2,167
Arkansas1,991
Vermont1,591
Delaware1,538
Rhode Island1,399
Wisconsin863
West Virginia-1521
Total U.S.852,651

Note: Negative values indicate a decline in energy-supply jobs by 2030.

Shift in Energy Supply Jobs by 2050: Wisconsin Advances

Wisconsin has stated its desire to transition to 100% clean energy by 2050, growing the state’s economy by more than $21 billion.

According to Princeton, Wisconsin could also introduce more than 46,000 net new energy-supply jobs by 2050, a tremendous leap over the state’s 863 new jobs forecasted through 2030.

StateForecasted Net Change in Energy-supply Jobs (2019-2050)
Texas728,899
California356,350
Iowa266,464
Florida262,254
Nebraska216,561
Oklahoma213,432
Virginia209,840
Colorado183,014
Indiana170,705
Illinois165,348
Minnesota154,014
Oregon139,981
Kansas135,561
Georgia130,015
Pennsylvania127,286
Missouri126,825
Alabama125,812
New York121,786
Washington107,267
Maine102,026
Mississippi92,425
North Dakota86,490
Michigan80,755
New Mexico76,566
Tennessee74,275
North Carolina74,150
South Carolina62,779
Wyoming61,225
Montana60,127
Ohio53,848
Wisconsin46,445
New Hampshire44,025
South Dakota43,916
Arkansas42,038
Maryland39,527
West Virginia32,439
Nevada30,990
Kentucky29,243
Idaho28,371
Utah28,059
Vermont26,293
Arizona14,399
Delaware11,954
New Jersey11,091
Louisiana9,969
Connecticut5,644
Rhode Island1,478
Massachusetts-6,703
Total U.S.5,160,124

Note: Negative values indicate a decline in energy-supply jobs by 2050.

The state of Wyoming has the second-highest change in energy supply jobs, going from 2,400 jobs by 2030 to nearly 62,000 by 2050. Meanwhile, California, Florida, and Texas will continue their commitment to being leaders and introducing more clean energy-supply jobs by 2050.

The only states that will see a decline in clean energy jobs between their 2030 and 2050 totals are the northeastern states of Connecticut, New Jersey, and Massachusetts.

Most states have taken measures to create more sustainable and high-paying jobs without leaving the current workforce in the lurch. On average, U.S. states will see an increase of 105,000 energy-supply jobs by 2050.

As the states and the country make this transition and federal and private investment in the renewable energy industry increases, it’ll be interesting to keep track of how new clean energy jobs impact the economy.

Subscribe to Visual Capitalist
Click for Comments

Energy Shift

How Many New Mines Are Needed for the Energy Transition?

Copper and lithium will require the highest number of new mines.

Published

on

This graphic estimates the number of mines needed to meet the 2030 demand for energy transition materials.

How Many New Mines Are Needed for the Energy Transition?

The energy transition relies on the minerals necessary to build electric vehicles, batteries, solar farms, and wind turbines. In an economy moving away from fossil fuels every day, sourcing the materials required for this shift presents one of the biggest challenges.
This graphic forecasts the number of mines that must be developed to meet the expected demand for energy transition raw materials and chemicals by 2030. This data comes exclusively from Benchmark Mineral Intelligence as of November 2024.

Nearly 300 Mines

According to Benchmark Mineral Intelligence, meeting global battery demand by 2030 would require 293 new mines or plants.

Mineral2024 Supply (t)2030 Demand (t)Supply Needed (t)No. of Mines/PlantsType
Lithium1,181,0002,728,0001,547,00052Mine
Cobalt272,000401,000129,00026Mine
Nickel3,566,0004,949,0001,383,00028Mine
Natural Graphite1,225,0002,933,0001,708,00031Mine
Synthetic Graphite1,820,0002,176,000356,00012Plant
Manganese90,000409,000319,00021Plant
Purified Phosphoric Acid6,493,0009,001,0002,508,00033Plant
Copper22,912,00026,576,0003,664,00061Mine
Rare Earths83,711116,66332,95229Mine

Copper, used in wires and other applications, and lithium, essential for batteries, will require the most significant number of new mines.

Manganese production would need to increase more than fourfold to meet anticipated demand.

Not an Easy Task

Building new mines is one of the biggest challenges in reaching the expected demand.

After discovery and exploration, mineral projects must go through a lengthy process of research, permitting, and funding before becoming operational.

In the U.S., for instance, developing a new mine can take 29 years.

In contrast, Ghana, the Democratic Republic of Congo, and Laos have some of the shortest development times in the world, at roughly 10 to 15 years.

 

Continue Reading

Energy Shift

Visualizing Europe’s Dependence on Chinese Resources

Europe depends entirely on China for heavy rare earth elements, critical for technologies such as hybrid cars and fiber optics.

Published

on

This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries.

Visualizing Europe’s Dependence on Chinese Resources

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Despite efforts by European countries to reduce their reliance on China for critical materials, the region remains heavily dependent on Chinese resources.

This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries. Bloomberg published this data in May 2024 based on European Commission research.

China’s Dominance in Clean Energy Minerals

Europe is 100% dependent on China for heavy rare earth elements used in technologies such as hybrid cars, fiber optics, and nuclear power.

Additionally, 97% of the magnesium consumed in Europe, for uses ranging from aerospace alloys to automotive parts, comes from the Asian country.

Raw MaterialPercentage Supplied by ChinaUsage
Heavy rare earth elements100%nuclear reactors, TV screens, fiber optics
Magnesium97%Aerospace alloys, automotive parts
Light rare earth elements85%Catalysts, aircraft engines, magnets
Lithium79%Batteries, pharmaceuticals, ceramics
Gallium71%Semiconductors, LEDs, solar panels
Scandium67%Aerospace components, power generation, sports equipment
Bismuth65%Pharmaceuticals, cosmetics, low-melting alloys
Vanadium62%Steel alloys, aerospace, tools
Baryte45%Oil and gas drilling, paints, plastics
Germanium45%Fiber optics, infrared optics, electronics
Natural graphite40%Batteries, lubricants, refractory materials
Tungsten32%Cutting tools, electronics, heavy metal alloys

Almost 80% of the lithium in electric vehicles and electronics batteries comes from China.

Assessing the Risks

The EU faces a pressing concern over access to essential materials, given the apprehension that China could “weaponize” its dominance of the sector.

One proposed solution is the EU’s Critical Raw Materials Act, which entered into force in May 2024.

The act envisions a quota of 10% of all critical raw materials consumed in the EU to be produced within the EU.

Additionally, it calls for a significant increase in recycling efforts, totaling up to 25% of annual consumption in the EU. Lastly, it sets the target of reducing dependency for any critical raw material on a single non-EU country to less than 65% by 2030.

Continue Reading

Subscribe

Popular