Energy Shift
Forecasting U.S. Clean Energy Job Creation by State (2019-2050)
How to Use: Click the arrows on the left/right to navigate between 2030 and 2050 job projections.
The Growth of Clean Energy Jobs by State
As the world is slowly moving towards a carbon-free future, job prospects within the renewable energy industry will see a boom in the coming years. Ranging from environmental scientists to renewable energy generation technicians and engineers, clean energy jobs are growing.
Between the shuttering of coal plants and companies making efforts to use renewable sources of energy, the United States on its own could see the creation of 5 million net new jobs within the energy-supply sector, driven by clean energy.
These jobs offer a more sustainable and high-paying alternative for the current and new workforce, especially in some of the country’s highly fossil-fuel-dependent states.
Based on analysis presented by Princeton University, the above infographic visualizes the forecasted change in energy-supply jobs in every state from 2019 to 2030 and up until 2050, in a net-zero scenario.
Shift in Energy Supply Jobs by 2030: Texas on the Forefront
Between 2020 and 2021, jobs in the oil and gas sector saw a 9% decline in Texas, a reduction of more than 55,000 in the state. Despite this, Texas is still one of the largest oil and natural gas producers, employing the highest number of people.
A rapid rise in employment in the clean energy industry will compensate for this decline in fossil fuel sector jobs. Texas fossil fuel unions have also signed onto the climate action plan and vowed to create more jobs in the clean energy sector.
In the process, Texas will see nearly 135,000 net new energy-supply jobs by 2030, more than any other state.
Here’s a look at the number of forecasted net new energy-supply jobs in the rest of the country:
State | Forecasted Net Change in Energy-supply Jobs (2019-2030) |
---|---|
Texas | 134,446 |
California | 73,259 |
Florida | 65,754 |
South Carolina | 55,058 |
Iowa | 46,295 |
Virginia | 43,250 |
New Mexico | 39,548 |
Indiana | 38,908 |
Missouri | 33,786 |
Oklahoma | 30,953 |
Nebraska | 30,866 |
Illinois | 30,003 |
New York | 26,063 |
North Carolina | 25,789 |
Kansas | 22,064 |
Colorado | 18,634 |
Washington | 17,272 |
Alabama | 12,977 |
New Jersey | 12,845 |
Minnesota | 12,726 |
Michigan | 12,546 |
Georgia | 12,375 |
Oregon | 11,794 |
Pennsylvania | 11,581 |
Massachusetts | 11,332 |
North Dakota | 10,319 |
Mississippi | 9,564 |
Louisiana | 7,460 |
Utah | 7,388 |
Idaho | 6,758 |
Maryland | 6,461 |
Connecticut | 6,429 |
Nevada | 6,358 |
Montana | 6,014 |
Ohio | 5,873 |
Kentucky | 5,106 |
Maine | 4,483 |
Arizona | 3,962 |
South Dakota | 3,904 |
Tennessee | 3,752 |
Wyoming | 2,458 |
New Hampshire | 2,167 |
Arkansas | 1,991 |
Vermont | 1,591 |
Delaware | 1,538 |
Rhode Island | 1,399 |
Wisconsin | 863 |
West Virginia | -1521 |
Total U.S. | 852,651 |
Note: Negative values indicate a decline in energy-supply jobs by 2030.
Shift in Energy Supply Jobs by 2050: Wisconsin Advances
Wisconsin has stated its desire to transition to 100% clean energy by 2050, growing the state’s economy by more than $21 billion.
According to Princeton, Wisconsin could also introduce more than 46,000 net new energy-supply jobs by 2050, a tremendous leap over the state’s 863 new jobs forecasted through 2030.
State | Forecasted Net Change in Energy-supply Jobs (2019-2050) |
---|---|
Texas | 728,899 |
California | 356,350 |
Iowa | 266,464 |
Florida | 262,254 |
Nebraska | 216,561 |
Oklahoma | 213,432 |
Virginia | 209,840 |
Colorado | 183,014 |
Indiana | 170,705 |
Illinois | 165,348 |
Minnesota | 154,014 |
Oregon | 139,981 |
Kansas | 135,561 |
Georgia | 130,015 |
Pennsylvania | 127,286 |
Missouri | 126,825 |
Alabama | 125,812 |
New York | 121,786 |
Washington | 107,267 |
Maine | 102,026 |
Mississippi | 92,425 |
North Dakota | 86,490 |
Michigan | 80,755 |
New Mexico | 76,566 |
Tennessee | 74,275 |
North Carolina | 74,150 |
South Carolina | 62,779 |
Wyoming | 61,225 |
Montana | 60,127 |
Ohio | 53,848 |
Wisconsin | 46,445 |
New Hampshire | 44,025 |
South Dakota | 43,916 |
Arkansas | 42,038 |
Maryland | 39,527 |
West Virginia | 32,439 |
Nevada | 30,990 |
Kentucky | 29,243 |
Idaho | 28,371 |
Utah | 28,059 |
Vermont | 26,293 |
Arizona | 14,399 |
Delaware | 11,954 |
New Jersey | 11,091 |
Louisiana | 9,969 |
Connecticut | 5,644 |
Rhode Island | 1,478 |
Massachusetts | -6,703 |
Total U.S. | 5,160,124 |
Note: Negative values indicate a decline in energy-supply jobs by 2050.
The state of Wyoming has the second-highest change in energy supply jobs, going from 2,400 jobs by 2030 to nearly 62,000 by 2050. Meanwhile, California, Florida, and Texas will continue their commitment to being leaders and introducing more clean energy-supply jobs by 2050.
The only states that will see a decline in clean energy jobs between their 2030 and 2050 totals are the northeastern states of Connecticut, New Jersey, and Massachusetts.
Most states have taken measures to create more sustainable and high-paying jobs without leaving the current workforce in the lurch. On average, U.S. states will see an increase of 105,000 energy-supply jobs by 2050.
As the states and the country make this transition and federal and private investment in the renewable energy industry increases, it’ll be interesting to keep track of how new clean energy jobs impact the economy.
Energy Shift
What Electricity Sources Power the World?
Coal still leads the charge when it comes to electricity, representing 35% of global power generation.

What Powered the World in 2022?
In 2022, 29,165.2 terawatt hours (TWh) of electricity was generated around the world, an increase of 2.3% from the previous year.
In this visualization, we look at data from the latest Statistical Review of World Energy, and ask what powered the world in 2022.
Coal is Still King
Coal still leads the charge when it comes to electricity, representing 35.4% of global power generation in 2022, followed by natural gas at 22.7%, and hydroelectric at 14.9%.

Source: Energy Institute
Over three-quarters of the world’s total coal-generated electricity is consumed in just three countries. China is the top user of coal, making up 53.3% of global coal demand, followed by India at 13.6%, and the U.S. at 8.9%.
Burning coal—for electricity, as well as metallurgy and cement production—is the world’s single largest source of CO2 emissions. Nevertheless, its use in electricity generation has actually grown 91.2% since 1997, the year when the first global climate agreement was signed in Kyoto, Japan.
Renewables on the Rise
However, even as non-renewables enjoy their time in the sun, their days could be numbered.
In 2022, renewables, such as wind, solar, and geothermal, represented 14.4% of total electricity generation with an extraordinary annual growth rate of 14.7%, driven by big gains in solar and wind. Non-renewables, by contrast, only managed an anemic 0.4%.
The authors of the Statistical Review do not include hydroelectric in their renewable calculations, even though many others, including the International Energy Agency, consider it a “well-established renewable power technology.”
With hydroelectric moved into the renewable column, together they accounted for over 29.3% of all electricity generated in 2022, with an annual growth rate of 7.4%.
France’s Nuclear Horrible Year
Another big mover in this year’s report was nuclear energy.
In addition to disruptions at the Zaporizhzhia nuclear power plant in Ukraine, shutdowns in France’s nuclear fleet to address corrosion found in the safety injection systems of four reactors led to a 4% drop in global use, year-over-year.
The amount of electricity generated by nuclear energy in that country dropped 22% to 294.7 TWh in 2022. As a result, France went from being the world’s biggest exporter of electricity, to a net importer.
Powering the Future
Turning mechanical energy into electrical energy is a relatively straightforward process. Modern power plants are engineering marvels, to be sure, but they still work on the same principle as the very first generator invented by Michael Faraday in 1831.
But how you get the mechanical energy is where things get complicated: coal powered the first industrial revolution, but heated the planet in the process; wind is free and clean, but is unreliable; and nuclear fission reliably generates emission-free electricity, but also creates radioactive waste.
With temperature records being set around the world in the summer, resolving these tensions isn’t just academic and next year’s report could be a crucial test of the world’s commitment to a clean energy future.
Energy Shift
How Mine Permitting Delays Impact the Transition to a Green Economy
Currently, the U.S. has a backlog of more than 280 mining projects awaiting permits.

Mine Permitting Delays and the Transition to a Green Economy
Minerals are essential components in many of our daily-use products, such as cell phones, laptops, and cars.
In fact, every American uses nearly 40,000 pounds of newly mined materials each year.
In the United States, however, the current permitting process makes it difficult for businesses to invest in the extraction and processing of minerals, such as copper.
This graphic by Northern Dynasty explores the untapped potential of mineral resources in America.
Copper, a Critical Material
In 2023 the U.S. Department of Energy officially added copper to its critical materials list, following the examples of the European Union, Japan, India, Canada, and China.
Copper is a highly efficient conductor of electricity and is considered vital for clean energy technologies such as solar, wind energy, and electric vehicles.
Green energy-related copper demand is expected to increase by nearly 600% by 2030. In this scenario, the copper market could see an annual deficit of up to about 1.5 million tonnes by 2035.
Despite having more than 53 million tons of copper reserves, the U.S. imports 45% of its copper from other countries.
This is the highest level of import reliance in over 30 years. One of the biggest reasons for this is the country’s mine permitting process.
A Rigorous Mine Permitting Process
Mines are large-scale projects that demand extensive research and policies. As a result, mining projects can take 16 years, or more, to start production.
Currently, the U.S. Bureau of Land Management—which regulates land use in the country—has a permitting backlog of more than 280 mining projects.
In addition, environmental activists have adopted a “not in my backyard” stance towards domestic mining. As a result, companies have often had to resort to litigation to make any progress in the permitting process.
“Activists have weaponized the government bodies that are essential to the safe and responsible development of domestic mines,” says Michael Westerlund, VP Investor Relations at Northern Dynasty Minerals.
The company owns the largest undeveloped copper deposit in the world, named Pebble, in Alaska. Pebble and other five major copper projects totaling over 11 billion tonnes in copper resources have been delayed because of the Federal permitting process.
The Largest Undeveloped Copper Deposit in the World
The Pebble Project has been through a roller coaster of regulatory activity for the past 15 years.
Recently, the U.S. Environmental Protection Agency banned the depositing of mining waste near the mining project in Alaska, citing potential harm to the local sockeye salmon industry.
However, the veto directly contradicts findings from the Federal government that concluded that mining and fishing could coexist in the region.
“Alaska does resource development better than any other place on the planet, and our opportunities to show the world a better way to extract our resources should not be unfairly preempted by the Federal Government”
–Alaska Governor Mike Dunleavy
Projects like Pebble can provide significant economic benefits and support the U.S. transition to a greener future. With the current regulatory uncertainty for U.S. developers, where the much-needed supply of copper will come from is unknown.
Click here to learn more about Pebble.
-
Electrification2 years ago
Ranked: The Top 10 EV Battery Manufacturers
-
Real Assets3 years ago
Visualizing China’s Dominance in Rare Earth Metals
-
Real Assets2 years ago
The World’s Top 10 Gold Mining Companies
-
Electrification1 year ago
The Key Minerals in an EV Battery
-
Misc2 years ago
All the Metals We Mined in One Visualization
-
Misc2 years ago
All the World’s Metals and Minerals in One Visualization
-
Real Assets3 years ago
What is a Commodity Super Cycle?
-
Real Assets3 years ago
How the World’s Top Gold Mining Stocks Performed in 2020