Energy Shift
The Clean Energy Employment Shift, by 2030
The Clean Energy Employment Shift, by 2030
With many countries and companies pledged to reduce emissions, the clean energy transition seems to be an inevitability. And that transition will undoubtedly have an impact on employment.
New sources of power don’t just require new and updated equipment, they also require people to operate them. And as demand for cleaner fuels shifts attention away from fossil fuels, it’s likely that not every sector will see a net gain of employment.
This graphic shows projected global employment growth in the clean energy sector and related areas, under announced climate pledges as of 2021, as tracked by the IEA’s World Energy Outlook.
Which Sectors Will Gain Jobs By 2030?
In total, the clean energy transition is expected to generate 10.3 million net new jobs around the world by 2030.
Though fuel generation will definitely be affected by the clean energy transition, the biggest impact will be felt in modernizing energy infrastructure:
Clean Energy Jobs By Sector (to 2030) | Jobs Gained | Jobs Lost | Net Job Shift |
---|---|---|---|
Efficiency | 3.2M | 0 | 3.2M |
Cars | 2.6M | 0 | 2.6M |
Power generation | 2.6M | -0.3M | 2.3M |
Grids | 1.6M | 0 | 1.6M |
Bioenergy | 1.2M | 0 | 1.2M |
End-use renewables | 1M | 0 | 1M |
Innovative technologies | 0.9M | 0 | 0.9M |
Critical minerals | 0.2M | 0 | 0.2M |
Coal | 0 | -0.6M | -0.6M |
Oil and gas | 0 | -2.1M | -2.1M |
Total | 13.3M | -3.0M | 10.3M |
In order to properly utilize the new sources of energy, the largest expected job gains are in electrical efficiency, power generation, and the automotive sector. Combined with modernizing the grid, they make up 75% of the 13.3 million in new job gains expected.
Comparatively, new energy sources like bioenergy, end-use renewables, and supply chain resources like innovative technologies and critical minerals combine for 3.3 million jobs. That offsets the 2.7 million jobs expected to be lost in fossil fuel sectors, plus an additional 0.3 million lost in power generation.
But it’s important to note that these expected employment changes are under announced climate pledges as of 2021. The IEA has calculated that in a full net-zero clean energy transition, the estimated quantity of jobs gained and lost would more than double across almost all sectors, with a net addition of 22.7 million new jobs.
Regardless of which path is closest to the reality, it’s clear the job landscape in energy and related sectors will be shifting in the coming years, and it will be interesting to see how and when such changes materialize.
Energy Shift
Visualizing the Decline of Copper Usage in EVs
Copper content in EVs has steadily decreased over the past decade, even as overall copper demand rises due to the increasing adoption of EVs.
Visualizing the Decline of Copper Usage in EVs
Copper intensity in passenger battery electric vehicles (BEVs) has steadily decreased over the last decade, driven by numerous technological advancements alongside increasing usage of alternative materials such as aluminum.
In this graphic, we visualize the evolution of copper demand in various subcomponents of passenger battery electric vehicles (BEVs) from 2015 to 2030F, along with total global copper demand driven by EVs for the same period. This data comes exclusively from Benchmark Mineral Intelligence.
Copper Intensity Per Car
According to Benchmark Mineral Intelligence, the copper intensity per vehicle is expected to decline by almost 38 kg, from 99 kg in 2015 to 62 kg by 2030.
Year | Wiring | Motor | Copper Foil | Busbar | Auxiliary Motor | Charging Cable | Total |
---|---|---|---|---|---|---|---|
2015 | 30 | 8 | 41.26 | 13.23 | 2.87 | 3.96 | 99.32 |
2016 | 29 | 8 | 38.68 | 13.37 | 2.85 | 3.92 | 95.82 |
2017 | 28 | 7 | 32.67 | 12.72 | 2.84 | 3.90 | 87.13 |
2018 | 27 | 7 | 26.39 | 11.87 | 2.82 | 3.88 | 78.96 |
2019 | 26 | 7 | 28.00 | 10.85 | 2.78 | 3.82 | 78.45 |
2020 | 25 | 7 | 24.71 | 10.24 | 2.73 | 3.76 | 73.44 |
2021 | 24 | 6 | 25.27 | 9.29 | 2.69 | 3.70 | 70.95 |
2022 | 23 | 7 | 28.44 | 8.56 | 2.65 | 3.64 | 73.29 |
2023 | 22 | 7 | 29.87 | 8.12 | 2.61 | 3.58 | 73.18 |
2024F | 21 | 7 | 27.73 | 7.67 | 2.56 | 3.52 | 69.48 |
2025F | 20 | 7 | 27.79 | 7.19 | 2.52 | 2.51 | 67.01 |
2026F | 20 | 7 | 27.78 | 6.63 | 2.48 | 3.41 | 67.30 |
2027F | 19 | 8 | 27.55 | 6.15 | 2.44 | 3.35 | 66.49 |
2028F | 18 | 8 | 26.77 | 5.70 | 2.40 | 3.30 | 64.17 |
2029F | 18 | 8 | 26.17 | 5.51 | 2.39 | 3.28 | 63.35 |
2030F | 17 | 8 | 25.63 | 5.44 | 2.37 | 3.26 | 61.70 |
One of the most significant factors driving this decline is thrifting, where engineers and manufacturers continuously improve the efficiency and performance of various components, leading to reduced copper usage. A key example of this is in battery production, where the thickness of copper foil used in battery anodes has significantly decreased.
In 2015, Benchmark estimated copper foil usage was just over 41 kg per vehicle (at an average thickness of 10 microns), but by 2030, it is projected to fall to 26 kg as manufacturers continue to adopt thinner foils.
Similarly, automotive wiring systems have become more localized, with advances in high-voltage wiring and modular integration allowing for reduced copper content in wiring harnesses.
Copper used in wiring has dropped from 30 kg per vehicle in 2015 to a projected 17 kg by 2030.
Newer, more compact power electronics and improved thermal management in motors and charging cables have also contributed to the reduction in copper usage.
Substitution has also played a role, with alternatives such as aluminum increasingly being used in components like busbars, wiring harnesses, and charging cable applications.
Aluminum’s lighter weight and lower cost have made it a practical alternative to copper in specific applications, though the additional space required to achieve the same level of conductivity can limit its use in certain cases.
Benchmark estimates that copper used in automotive wire harnesses has declined by 30% between 2015 and 2024.
The Road Ahead
Despite reductions in per-vehicle copper usage, the outlook for copper demand from the EV sector remains strong due to the sector’s growth.
Year | EV Sector Copper Demand (tonnes) |
---|---|
2015 | 56K |
2016 | 82K |
2017 | 111K |
2018 | 166K |
2019 | 179K |
2020 | 237K |
2021 | 447K |
2022 | 696K |
2023 | 902K |
2024F | 1.0M |
2025F | 1.2M |
2026F | 1.5M |
2027F | 1.7M |
2028F | 2.0M |
2029F | 2.2M |
2030F | 2.5M |
Benchmark’s analysis indicates that by 2030, copper demand driven by EVs alone will exceed 2.5 million tonnes, securing copper’s critical role in the transition to a low-carbon future.
Energy Shift
Visualizing the Rise in Global Coal Consumption
China remains the largest coal consumer, making up 56% of the global total.
Visualizing the Rise in Global Coal Consumption
This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.
Despite efforts to decarbonize the economy, global coal consumption surpassed 164 exajoules for the first time in 2023. The fossil fuel still accounts for 26% of the world’s total energy consumption.
In this graphic, we show global coal consumption by region from 1965 to 2023, based on data from the Energy Institute.
China Leads in Coal Consumption
China is by far the largest consumer of coal, accounting for 56% of the global total, with 91.94 exajoules in 2023.
It is followed by India, with 21.98 exajoules, and the U.S., with 8.20 exajoules. In 2023, India exceeded the combined consumption of Europe and North America for the first time.
Regionally, North America and Europe have seen a decline in coal consumption since the 1990s, while the Asia-Pacific region experienced a surge in demand during the same period.
Year | Asia Pacific (Exajoules) | North America | Europe | Rest of the World | Total World |
---|---|---|---|---|---|
2013 | 114.14 | 19.48 | 15.86 | 11.47 | 160.95 |
2014 | 115.74 | 19.39 | 14.88 | 11.68 | 161.62 |
2015 | 115.00 | 16.89 | 14.24 | 11.11 | 157.25 |
2016 | 113.21 | 15.55 | 13.74 | 11.35 | 153.85 |
2017 | 115.67 | 15.30 | 13.29 | 11.23 | 155.50 |
2018 | 119.05 | 14.50 | 12.98 | 11.34 | 157.87 |
2019 | 121.94 | 12.49 | 11.06 | 11.45 | 156.95 |
2020 | 121.91 | 9.97 | 9.57 | 10.82 | 152.27 |
2021 | 127.75 | 11.24 | 10.44 | 11.12 | 160.56 |
2022 | 129.80 | 10.54 | 10.02 | 11.18 | 161.53 |
2023 | 135.70 | 8.83 | 8.39 | 11.11 | 164.03 |
Coal Production on the Rise
In addition to consumption, global coal production also reached its highest-ever level in 2023, at 179 exajoules.
The Asia-Pacific region accounted for nearly 80% of global output, with activity concentrated in Australia, China, India, and Indonesia.
China alone was responsible for just over half of total global production.
Learn More on the Voronoi App
If you want to learn more about fossil fuel consumption, check out this graphic showing the top 12 countries by fossil fuel consumption in 2023.
-
Electrification2 years ago
The Key Minerals in an EV Battery
-
Energy Shift2 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification1 year ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Energy Shift3 years ago
The Solar Power Duck Curve Explained
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification2 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification3 years ago
Breaking Down the Cost of an EV Battery Cell