Connect with us

Energy Shift

The Future of Uranium: A Story of Supply and Demand

Published

on

The following content is sponsored by Standard Uranium.

The Future of Uranium: A Story of Supply and Demand

The uranium market is at a tipping point.

Since the Fukushima accident in 2011, uranium prices have been on a downtrend, forcing several miners to suspend or scale back operations. But nuclear’s growing role in the clean energy transition, in addition to a supply shortfall, could turn the tide for the uranium industry.

The above infographic from Standard Uranium outlines how uranium’s demand and supply fundamentals stack up, and how that balance could change the direction of the market in the future.

The Uranium Supply Chain

The supply of uranium primarily comes from mines around the world, in addition to secondary sources like commercial stockpiles and military stockpiles.

Although uranium is relatively abundant in the Earth’s crust, not all uranium deposits are economically recoverable. While some countries have uranium resources that can be mined profitably when prices are low, others do not.

For example, Kazakhstan hosts roughly 1.2 billion lbs of identified recoverable uranium resources extractable at less than $18 per lb, more than any other country. On the contrary, Australia hosts a larger resource of uranium but with a higher cost of extraction. This varying availability of resources affects how much uranium these countries produce.

Country2019 production (lbs U)% of Total
Kazakhstan 🇰🇿50,282,97342.1%
Canada 🇨🇦15,308,88112.8%
Australia 🇦🇺14,579,15212.2%
Namibia 🇳🇦11,250,1769.4%
Uzbekistan 🇺🇿7,716,1706.5%
Niger 🇳🇪6,730,7055.6%
Russia 🇷🇺6,393,3985.3%
China 🇨🇳3,527,3923.0%
Ukraine 🇺🇦1,653,4651.4%
India 🇮🇳881,8480.7%
South Africa 🇿🇦762,7990.6%
United States 🇺🇸147,7100.1%
Rest of the World 🌎308,6470.3%
Total119,543,315100%

It’s not surprising that Kazakhstan is the largest producer of uranium given its vast wealth of low-cost resources. In 2019, Kazakhstan produced more uranium than the second, third, and fourth-largest producers combined.

Canada produced around one-third of Kazakhstan’s production despite the suspension of the McArthur River Mine, the world’s largest uranium mine, in 2018. Australia was the world’s third-largest producer with just two operating uranium mines.

However, production figures do not tell the entire story, and it’s important to look at how the market price of uranium impacts supply.

How Uranium Prices Affect Supply

Low uranium prices have had a twofold effect on uranium supply over the last decade.

Firstly, miners have cut back on production due to the weakness in prices, reducing the primary supply of uranium. Here are some production cutbacks from major uranium mining companies:

YearCompanyProduction Cutback
2016Cameco 🇨🇦Production at Rabbit Lake Mine suspended
2017Kazatomprom 🇰🇿Output reduced by 10%
2018Kazatomprom 🇰🇿Output reduced by 20%
2018Paladin Energy 🇦🇺 Production at Langer Heinrich Mine suspended
2018Cameco 🇨🇦Production at McArthur River Mine suspended
2019Kazatomprom 🇰🇿Output reduced by 20%

Table excludes suspensions induced by COVID-19.
Sources: Cameco, WISE Uranium Project, Paladin Energy

In addition, low prices have also blocked new supplies from entering the market. Around 46% of the world’s identified uranium resources, 8 million tonnes, have an extraction cost higher than $59 per lb. However, uranium prices have hovered close to $30 per lb since 2011, making these resources uneconomic.

As a result, the supply of uranium has been tightening, and in 2020, mine production of uranium covered only 74% of global reactor requirements.

Going Nuclear: The Future of Uranium

The world is moving towards a cleaner energy future, and nuclear power could play a key role in this transition.

Nuclear power is not only carbon-free, it’s also one of the most reliable and safe sources of energy. Countries around the world are beginning to recognize these advantages, including Japan, where all 55 reactors were previously taken offline following the Fukushima accident.

With more than 54 reactors under construction and 100 reactors planned worldwide, the demand for uranium is set to grow. Unlocking new and existing supplies is critical to meeting this rising demand, and new uranium discoveries will be increasingly valuable in balancing the market.

Standard Uranium is working to discover uranium with five projects in the Athabasca Basin, Saskatchewan, Canada, home of the world’s highest-grade uranium deposits.

Click for Comments

Energy Shift

Visualizing the Decline of Copper Usage in EVs

Copper content in EVs has steadily decreased over the past decade, even as overall copper demand rises due to the increasing adoption of EVs.

Published

on

The total copper per vehicle is projected to decrease by 38 kg between 2015 and 2030.

Visualizing the Decline of Copper Usage in EVs

Copper intensity in passenger battery electric vehicles (BEVs) has steadily decreased over the last decade, driven by numerous technological advancements alongside increasing usage of alternative materials such as aluminum.

In this graphic, we visualize the evolution of copper demand in various subcomponents of passenger battery electric vehicles (BEVs) from 2015 to 2030F, along with total global copper demand driven by EVs for the same period. This data comes exclusively from Benchmark Mineral Intelligence.

Copper Intensity Per Car

According to Benchmark Mineral Intelligence, the copper intensity per vehicle is expected to decline by almost 38 kg, from 99 kg in 2015 to 62 kg by 2030.

YearWiringMotorCopper FoilBusbarAuxiliary MotorCharging CableTotal
201530841.2613.232.873.9699.32
201629838.6813.372.853.9295.82
201728732.6712.722.843.9087.13
201827726.3911.872.823.8878.96
201926728.0010.852.783.8278.45
202025724.7110.242.733.7673.44
202124625.279.292.693.7070.95
202223728.448.562.653.6473.29
202322729.878.122.613.5873.18
2024F21727.737.672.563.5269.48
2025F20727.797.192.522.5167.01
2026F20727.786.632.483.4167.30
2027F19827.556.152.443.3566.49
2028F18826.775.702.403.3064.17
2029F18826.175.512.393.2863.35
2030F17825.635.442.373.2661.70

One of the most significant factors driving this decline is thrifting, where engineers and manufacturers continuously improve the efficiency and performance of various components, leading to reduced copper usage. A key example of this is in battery production, where the thickness of copper foil used in battery anodes has significantly decreased.

In 2015, Benchmark estimated copper foil usage was just over 41 kg per vehicle (at an average thickness of 10 microns), but by 2030, it is projected to fall to 26 kg as manufacturers continue to adopt thinner foils.

Similarly, automotive wiring systems have become more localized, with advances in high-voltage wiring and modular integration allowing for reduced copper content in wiring harnesses.

Copper used in wiring has dropped from 30 kg per vehicle in 2015 to a projected 17 kg by 2030.

Newer, more compact power electronics and improved thermal management in motors and charging cables have also contributed to the reduction in copper usage.

Substitution has also played a role, with alternatives such as aluminum increasingly being used in components like busbars, wiring harnesses, and charging cable applications.

Aluminum’s lighter weight and lower cost have made it a practical alternative to copper in specific applications, though the additional space required to achieve the same level of conductivity can limit its use in certain cases.

Benchmark estimates that copper used in automotive wire harnesses has declined by 30% between 2015 and 2024.

The Road Ahead

Despite reductions in per-vehicle copper usage, the outlook for copper demand from the EV sector remains strong due to the sector’s growth.

YearEV Sector Copper Demand (tonnes)
201556K
201682K
2017111K
2018166K
2019179K
2020237K
2021447K
2022696K
2023902K
2024F1.0M
2025F1.2M
2026F1.5M
2027F1.7M
2028F2.0M
2029F2.2M
2030F2.5M

Benchmark’s analysis indicates that by 2030, copper demand driven by EVs alone will exceed 2.5 million tonnes, securing copper’s critical role in the transition to a low-carbon future.

Continue Reading

Energy Shift

Visualizing the Rise in Global Coal Consumption

China remains the largest coal consumer, making up 56% of the global total.

Published

on

In this graphic, we show global coal consumption by region from 1965 to 2020.

Visualizing the Rise in Global Coal Consumption

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Despite efforts to decarbonize the economy, global coal consumption surpassed 164 exajoules for the first time in 2023. The fossil fuel still accounts for 26% of the world’s total energy consumption.

In this graphic, we show global coal consumption by region from 1965 to 2023, based on data from the Energy Institute.

China Leads in Coal Consumption

China is by far the largest consumer of coal, accounting for 56% of the global total, with 91.94 exajoules in 2023.

It is followed by India, with 21.98 exajoules, and the U.S., with 8.20 exajoules. In 2023, India exceeded the combined consumption of Europe and North America for the first time.

Regionally, North America and Europe have seen a decline in coal consumption since the 1990s, while the Asia-Pacific region experienced a surge in demand during the same period.

YearAsia Pacific (Exajoules)North AmericaEuropeRest of the WorldTotal World
2013114.1419.4815.8611.47160.95
2014115.7419.3914.8811.68161.62
2015115.0016.8914.2411.11157.25
2016113.2115.5513.7411.35153.85
2017115.6715.3013.2911.23155.50
2018119.0514.5012.9811.34157.87
2019121.9412.4911.0611.45156.95
2020121.919.979.5710.82152.27
2021127.7511.2410.4411.12160.56
2022129.8010.5410.0211.18161.53
2023135.708.838.3911.11164.03

Coal Production on the Rise

In addition to consumption, global coal production also reached its highest-ever level in 2023, at 179 exajoules.

The Asia-Pacific region accounted for nearly 80% of global output, with activity concentrated in Australia, China, India, and Indonesia.

China alone was responsible for just over half of total global production.

Learn More on the Voronoi App 

If you want to learn more about fossil fuel consumption, check out this graphic showing the top 12 countries by fossil fuel consumption in 2023.

Continue Reading

Subscribe

Popular