Connect with us

Electrification

Visualizing the Growing Demand for Nickel and Copper

Published

on

The following content is sponsored by Premium Nickel

Visualizing the Growing Demand for Nickel and Copper

Nickel and copper play a vital role in a clean energy future, as both metals are used in many new technologies like EV batteries, solar panels, and wind turbines.

This visualization from our sponsor Premium Nickel explores how responsible mining will be essential to meet the demand for these metals.

Nickel and Copper in the Clean Energy Transition

Copper is a critical mineral in the production of EVs, used in electric motors, batteries, and charging infrastructure. The metal is an excellent conductor of electricity, making it ideal for use in vehicles.

According to the International Energy Agency (IEA), an average EV can contain around 53kg of copper compared to 22kg in a combustion vehicle. As a result, copper demand for EV batteries alone is expected to jump from 210,000 tonnes in 2020 to 1.8 million tonnes in 2030.

MineralContent in electric vehicles (kg)Content in conventional cars (kg)
Graphite (natural and synthetic)66.30
Copper53.222.3
Nickel39.90
Manganese24.511.2
Cobalt13.30
Lithium8.90
Rare earths0.50
Zinc0.10.1
Others0.30.3

Nickel is another important mineral in the clean energy transition, as it is used in the production of EV batteries. One of the benefits of using nickel in EV batteries is that it can increase the energy density of the battery.

Additionally, nickel can help to reduce the cost of EV batteries, as it is less expensive than other materials commonly used in battery production.

In a scenario that meets the Paris Agreement goals, clean energy technologies’ share of total nickel demand rises significantly over the next two decades to over 60%.

Pioneering Principled Copper and Nickel Mining

Nickel and copper production are both currently emissions intensive.

For copper, the emissions intensity is about 4.5 kg of CO2 for every kg produced. Nickel’s emissions intensity varies from ~20–80 kg CO2 per kg of nickel produced, depending on the purity of the final product and the extraction process used.

Recent research has shown that consumers are also more aware of their environmental impact. In fact, 26% of American vehicle buyers cited their personal environmental impact as the top influencing factor in buying or leasing a vehicle.

In this context, responsible mining practices must be in place to ensure a sustainable supply chain.

Premium Nickel is targeting to produce high-grade concentrates of both nickel and copper using carbon efficient technologies.

The company’s flagship projects in Botswana are been developed to minimize the environmental footprint, using less power, less water, alternative energy sources.

Using new technology and working closely with the community, the company has adopted the highest international standards for the protection of the environment, while developing its projects.

Premium Nickel is well positioned to meet the growing demand for nickel and copper. Click here to learn more about the company.

Click for Comments

Electrification

Visualizing Chinese EV Market Share Overseas

Chinese brands accounted for 62% of global EV sales in 2024.

Published

on

This graphic shows the presence of Chinese electric vehicles in other countries, considering total EV sales and market share. 

Visualizing Chinese EV Market Share Overseas

China is the undisputed global powerhouse of the EV industry, leading in both domestic sales and overall production. Chinese brands were responsible for 62% of EV global sales in 2024.

This graphic shows the presence of Chinese electric vehicles in other countries, considering total EV sales and market share.  This data comes exclusively from Rho Motion’s EV Sales Quarterly Outlook, as of 2024.

Affordable EVs

As the global EV market has expanded, in 2024, over 17 million units were sold. Chinese manufacturers have aggressively pursued international opportunities, offering affordable vehicles that often undercut local competitors.

However, market access has varied significantly across regions. The U.S. and Canada are the only markets where Chinese-made EVs have no presence. The U.S. has taken a firm stance against Chinese EVs, imposing a 100% tariff in 2024, and more recently enacting laws banning Chinese technology in EVs on U.S. roads. Given its deep economic ties with the U.S., Canada followed suit with identical tariffs.

CountryTotal EV SalesChinese Market Share
🇺🇸 U.S.1,540,3540%
🇩🇪 Germany577,6304%
🇬🇧 UK571,1417%
🇫🇷 France464,5895%
🇨🇦 Canada246,4240%
🇧🇪 Belgium192,5603%
🇳🇱 Netherlands190,7846%
🇸🇪 Sweden165,2565%
🇳🇴 Norway126,0889%
🇧🇷 Brazil125,62482%
🇪🇸 Spain122,37510%
🇮🇹 Italy121,8896%
🇯🇵 Japan114,1292%
🇦🇺 Australia113,51126%
🇮🇳 India104,42623%
🇩🇰 Denmark103,2028%
🇲🇽 Mexico95,28270%
🇹🇭 Thailand77,25077%
🇵🇹 Portugal72,0708%
🇮🇱 Israel69,59564%
🇨🇭 Switzerland68,4071%
🇦🇹 Austria63,71711%
🇮🇩 Indonesia43,20275%
🇫🇮 Finland37,8812%
🇮🇪 Ireland30,1059%
🇸🇬 Singapore29,52126%
🇲🇾 Malaysia21,79852%
🇳🇵 Nepal12,70574%
🇳🇿 New Zealand10,02715%
🇨🇱 Chile5,60442%

Europe, by contrast, has been more open to Chinese EVs but remains cautious about protecting its domestic automotive industry. In 2024, following an anti-subsidy investigation, the EU introduced variable BEV import tariffs on specific Chinese automakers of up to an additional 35.3%.

Meanwhile, in countries without a strong domestic auto industry, Chinese EVs have rapidly gained market share. This is especially evident in neighboring Asian countries and in South and Central America, where Chinese manufacturers are expanding aggressively by beginning to build production capacity and capitalizing on the demand for affordable electric vehicles.

Continue Reading

Electrification

Visualizing the Supply Deficit of Battery Minerals (2024-2034P)

A surplus of key metals is expected to shift to a major deficit within a decade.

Published

on

This graphic represents how key minerals for batteries will shift from a surplus in 2024 to a deficit in 2034.

Visualizing the Supply Deficit of Battery Minerals (2024-2034P)

The world currently produces a surplus of key battery minerals, but this is projected to shift to a significant deficit over the next 10 years.

This graphic illustrates this change, driven primarily by growing battery demand. The data comes exclusively from Benchmark Mineral Intelligence, as of November 2024.

Minerals in a Lithium-Ion Battery Cathode

Minerals make up the bulk of materials used to produce parts within the cell, ensuring the flow of electrical current:

  • Lithium: Acts as the primary charge carrier, enabling energy storage and transfer within the battery.
  • Cobalt: Stabilizes the cathode structure, improving battery lifespan and performance.
  • Nickel: Boosts energy density, allowing batteries to store more energy.
  • Manganese: Enhances thermal stability and safety, reducing overheating risks.

The cells in an average battery with a 60 kilowatt-hour (kWh) capacity—the same size used in a Chevy Bolt—contain roughly 185 kilograms of minerals.

Battery Demand Forecast

Due to the growing demand for these materials, their production and mining have increased exponentially in recent years, led by China. In this scenario, all the metals shown in the graphic currently experience a surplus.

In the long term, however, with the greater adoption of batteries and other renewable energy technologies, projections indicate that all these minerals will enter a deficit.

For example, lithium demand is expected to more than triple by 2034, resulting in a projected deficit of 572,000 tonnes of lithium carbonate equivalent (LCE). According to Benchmark analysis, the lithium industry would need over $40 billion in investment to meet demand by 2030.

MetricLithium (in tonnes LCE)Nickel (in tonnes)Cobalt (in tonnes)Manganese (in tonnes)
2024 Demand1,103,0003,440,000230,000119,000
2024 Surplus88,000117,00024,00011,000
2034 Demand3,758,0006,082,000468,000650,000
2034 Deficit-572,000-839,000-91,000-307,000

Nickel demand, on the other hand, is expected to almost double, leading to a deficit of 839,000 tonnes by 2034. The surge in demand is attributed primarily to the rise of mid- and high-performance electric vehicles (EVs) in Western markets.

Continue Reading
The Hottest IPO Of the year.

Subscribe

Popular