Connect with us

Energy Shift

Visualizing the Global Demand for Oil (2022-2045F)

Published

on

The following content is sponsored by Range ETFs

The Global Demand for Oil (2022-2045F)

Economists have been attempting to forecast the point of peak oil—the year when oil demand reaches its maximum level—since the 1970s. Despite increasing warnings regarding climate change, global demand has continued to rise over the last few years and could continue.

In this graphic, Visual Capitalist partnered with Range ETFs to explore the global oil demand and determine which region will demand the most in 2045.

Projecting Global Oil Demand

As per OPEC, Oil demand could be as much as 17% higher by 2045 than it was in 2022. These projections are in millions of oil barrels per day and broken down by oil product.

Oil Product20222025F2030F2035F2040F2045F
Jet Fuel789101011
Gasoline262829292929
Diesel293031323232
Ethane131416161617
Other242627272827
Total99106112114115116

Oil’s importance in the global economy and its role as a fuel in many nations and industries worldwide contribute to the strength in demand. Additionally, the demand for jet fuel could grow by as much as 60% between 2022 and 2045, as currently, there is no carbon-neutral alternative to kerosene.

Who Will Be Using This Oil?

The forecasts also describe how much of this demand could flow to each region by 2045. Here is how it breaks down:

Bubble chart of OPEC data that shows the percentage of forecast global oil demand each region will demand in 2045.

Despite significant investments in clean energy, large economies like those in North America, China, and India are forecast to have the most demand in 2045. This would be driven by each region’s need to use oil in transportation, industrial processes, and energy generation.

The Future of Oil

Oil’s continued importance as a fuel will likely keep demand growing over the next two decades.

Investors can take advantage of the growing potential oil demand by gaining exposure to various companies at the forefront of the offshore oil industry through the Range Global Offshore Oil Services Index ETF (OFOS).

Subscribe to Visual Capitalist
Click for Comments

Energy Shift

How Many New Mines Are Needed for the Energy Transition?

Copper and lithium will require the highest number of new mines.

Published

on

This graphic estimates the number of mines needed to meet the 2030 demand for energy transition materials.

How Many New Mines Are Needed for the Energy Transition?

The energy transition relies on the minerals necessary to build electric vehicles, batteries, solar farms, and wind turbines. In an economy moving away from fossil fuels every day, sourcing the materials required for this shift presents one of the biggest challenges.
This graphic forecasts the number of mines that must be developed to meet the expected demand for energy transition raw materials and chemicals by 2030. This data comes exclusively from Benchmark Mineral Intelligence as of November 2024.

Nearly 300 Mines

According to Benchmark Mineral Intelligence, meeting global battery demand by 2030 would require 293 new mines or plants.

Mineral2024 Supply (t)2030 Demand (t)Supply Needed (t)No. of Mines/PlantsType
Lithium1,181,0002,728,0001,547,00052Mine
Cobalt272,000401,000129,00026Mine
Nickel3,566,0004,949,0001,383,00028Mine
Natural Graphite1,225,0002,933,0001,708,00031Mine
Synthetic Graphite1,820,0002,176,000356,00012Plant
Manganese90,000409,000319,00021Plant
Purified Phosphoric Acid6,493,0009,001,0002,508,00033Plant
Copper22,912,00026,576,0003,664,00061Mine
Rare Earths83,711116,66332,95229Mine

Copper, used in wires and other applications, and lithium, essential for batteries, will require the most significant number of new mines.

Manganese production would need to increase more than fourfold to meet anticipated demand.

Not an Easy Task

Building new mines is one of the biggest challenges in reaching the expected demand.

After discovery and exploration, mineral projects must go through a lengthy process of research, permitting, and funding before becoming operational.

In the U.S., for instance, developing a new mine can take 29 years.

In contrast, Ghana, the Democratic Republic of Congo, and Laos have some of the shortest development times in the world, at roughly 10 to 15 years.

 

Continue Reading

Energy Shift

Visualizing Europe’s Dependence on Chinese Resources

Europe depends entirely on China for heavy rare earth elements, critical for technologies such as hybrid cars and fiber optics.

Published

on

This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries.

Visualizing Europe’s Dependence on Chinese Resources

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Despite efforts by European countries to reduce their reliance on China for critical materials, the region remains heavily dependent on Chinese resources.

This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries. Bloomberg published this data in May 2024 based on European Commission research.

China’s Dominance in Clean Energy Minerals

Europe is 100% dependent on China for heavy rare earth elements used in technologies such as hybrid cars, fiber optics, and nuclear power.

Additionally, 97% of the magnesium consumed in Europe, for uses ranging from aerospace alloys to automotive parts, comes from the Asian country.

Raw MaterialPercentage Supplied by ChinaUsage
Heavy rare earth elements100%nuclear reactors, TV screens, fiber optics
Magnesium97%Aerospace alloys, automotive parts
Light rare earth elements85%Catalysts, aircraft engines, magnets
Lithium79%Batteries, pharmaceuticals, ceramics
Gallium71%Semiconductors, LEDs, solar panels
Scandium67%Aerospace components, power generation, sports equipment
Bismuth65%Pharmaceuticals, cosmetics, low-melting alloys
Vanadium62%Steel alloys, aerospace, tools
Baryte45%Oil and gas drilling, paints, plastics
Germanium45%Fiber optics, infrared optics, electronics
Natural graphite40%Batteries, lubricants, refractory materials
Tungsten32%Cutting tools, electronics, heavy metal alloys

Almost 80% of the lithium in electric vehicles and electronics batteries comes from China.

Assessing the Risks

The EU faces a pressing concern over access to essential materials, given the apprehension that China could “weaponize” its dominance of the sector.

One proposed solution is the EU’s Critical Raw Materials Act, which entered into force in May 2024.

The act envisions a quota of 10% of all critical raw materials consumed in the EU to be produced within the EU.

Additionally, it calls for a significant increase in recycling efforts, totaling up to 25% of annual consumption in the EU. Lastly, it sets the target of reducing dependency for any critical raw material on a single non-EU country to less than 65% by 2030.

Continue Reading

Subscribe

Popular