Connect with us

Electrification

Visualizing the EU’s Critical Minerals Gap by 2030

Published

on

Benchmark logo

This graphic underscores the scale of the challenge the EU faces in strengthening its critical mineral supply chains under the Critical Raw Material Act.

Visualizing EU’s Critical Minerals Gap by 2030

The European Union’s Critical Raw Material Act sets out several ambitious goals to enhance the resilience of its critical mineral supply chains.

The Act includes non-binding targets for the EU to build sufficient mining capacity so that mines within the bloc can meet 10% of its critical mineral demand.

Additionally, the Act establishes a goal for 40% of demand to be met by processing within the bloc, and 25% through recycling.

Several months after the Act’s passage in May 2024, this graphic highlights the scale of the challenge the EU aims to overcome. This data comes exclusively from Benchmark Mineral Intelligence, as of July 2024. The graphic excludes synthetic graphite.

Securing Europe’s Supply of Critical Materials

With the exception of nickel mining, none of the battery minerals deemed strategic by the EU are on track to meet these goals.

Graphite, the largest mineral component used in batteries, is of particular concern. There is no EU-mined supply of manganese ore or coke, the precursor to synthetic graphite.

By 2030, the European Union is expected to supply 16,000 tonnes of flake graphite locally, compared to the 45,000 tonnes it would need to meet the 10% mining target.

Metal 2030 Demand (tonnes)Mining (F)Processing (F)Recycling (F)Mining Target Processing Target Recycling Target
Lithium459K29K46K25K46K184K115K
Nickel403K42K123K25K40K161K101K
Cobalt94K1K19K6K9K37K23K
Manganese147K0K21K5K15K59K37K
Flake Graphite453K16K17KN/A45K86KN/A

The EU is also expected to mine 29,000 tonnes of LCE (lithium carbonate equivalent) compared to the 46,000 tonnes needed to meet the 10% target.

In terms of mineral processing, the bloc is expected to process 25% of its lithium requirements, 76% of nickel, 51% of cobalt, 36% of manganese, and 20% of flake graphite.

The EU is expected to recycle only 22% of its lithium needs, 25% of nickel, 26% of cobalt, and 14% of manganese. Graphite, meanwhile, is not widely recycled on a commercial scale.

Click for Comments

Electrification

Charted: Battery Capacity by Country (2024-2030)

This graphic compares battery capacity by cathode type across major countries.

Published

on

This graphic, using exclusive data from Benchmark Mineral Intelligence, compares battery capacity by cathode type across major countries.

Charted: Battery Capacity by Country (2024-2030)

As the global energy transition accelerates, battery demand continues to soar—along with competition between battery chemistries.

According to the International Energy Agency, in 2024, electric vehicle sales rose by 25% to 17 million, pushing annual battery demand past 1 terawatt-hour (TWh)—a historic milestone.

This graphic, using exclusive data from Benchmark Mineral Intelligence (as of February 2025), compares battery capacity by cathode type across major countries. It focuses on the two dominant chemistries: Nickel Cobalt Manganese (NCM) and Lithium Iron Phosphate (LFP).

Understanding Cathode Chemistries

Batteries store and release energy through the movement of lithium ions. The cathode—a key electrode—determines a battery’s cost, range, and thermal performance.

NCM

  • Offers higher energy density and better performance in cold climates, but is more expensive and has a shorter lifespan.

LFP

  • Known for its lower cost and improved thermal stability, though it delivers a shorter driving range and adds weight.

As of now, LFP cathodes make up 40% of the EV market in terms of gigawatt-hours (GWh).

Beyond passenger vehicles, LFP batteries are widely used in systems that undergo frequent charging and discharging—like residential and grid-scale energy storage—where added weight isn’t a major concern. They’re also ideal for daily-use applications such as buses and delivery fleets.

Regional Market Trends

In China, LFP is already dominant, accounting for 64% of the market in 2024. By 2030, that figure is projected to grow to 76%, driven by a focus on affordability in the world’s largest EV market. Notably, over 70% of all EV batteries ever manufactured have been produced in China, contributing to deep manufacturing expertise.

Region/CountryYear% NCM% LFP% Other
China202427%64%8%
North America202471%7%22%
Europe202469%8%24%
South Korea202462%4%35%
Japan202458%0%42%

Outside of China, NCM remains the leading chemistry due to consumer demand for longer range and premium performance.

North America – NCM holds a 71% share in 2024, with a slight decline to 69% forecasted for 2030.

Europe – NCM’s share is expected to grow from 69% in 2024 to 71% by 2030.

South Korea and Japan – Both countries show similar trends, with NCM gaining share as LFP remains limited or absent.

Continue Reading

Electrification

Top 20 Countries by Battery Storage Capacity

China holds about two-thirds of global BESS capacity.

Published

on

This graphic highlights the top 20 battery storage capacity markets by current and planned grid capacity in gigawatt hour (GWh).

Visualizing the Top 20 Countries by Battery Storage Capacity

Over the past three years, the Battery Energy Storage System (BESS) market has been the fastest-growing segment of global battery demand. These systems store electricity using batteries, helping stabilize the grid, store renewable energy, and provide backup power.

In 2024, the market grew by 52%, compared to 25% growth in the EV battery market. Among the top companies in the BESS market are technology giants such as Samsung, LG, BYD, Panasonic, and Tesla.

This graphic highlights the top 20 BESS markets by current and planned grid capacity in gigawatt hour (GWh), based on exclusive data from Rho Motion as of February 2025.

Chinese Dominance

As with the EV market, China currently dominates global BESS deployments, accounting for approximately two-thirds of installed capacity. However, other markets are expected to grow significantly in the coming years, driven by low-cost lithium-ion cells and the expansion of renewable energy capacity.

Currently, China has 215.5 GWh of installed capacity and an ambitious 505.6 GWh project pipeline. The U.S. follows with 82.1 GWh installed and 162.5 GWh planned.

Top BESS MarketsInstalled 2024 (GWh)2027P
🇨🇳 China215.5721.2
🇺🇸 USA82.1244.6
🇬🇧 UK7.556.3
🇦🇺 Australia5.6102.9
🇨🇱 Chile3.841.0
🇮🇹 Italy2.27.9
🇸🇦 Saudi Arabia1.332.4
🇿🇦 South Africa1.39.4
🇮🇪 Ireland1.62.5
🇵🇭 Philippines1.06.1
🇯🇵 Japan1.05.0
🇩🇪 Germany1.06.2
🇰🇷 South Korea1.11.3
🇮🇱 Israel0.84.6
🇫🇷 France0.61.8
🇧🇪 Belgium0.75.3
🇺🇿 Uzbekistan0.65.9
🇸🇪 Sweden0.61.5
🇮🇳 India0.54.3
🇨🇦 Canada0.318.3

Canada is projected to be the fastest-growing market through 2027, with its cumulative capacity hitting 18.3 GWh—a significant increase from its current 0.3 GWh capacity.

Countries such as Australia (97.3 GWh pipeline), Saudi Arabia (31.1 GWh), and Chile (37.2 GWh) have relatively small current installations but plan substantial expansions. Within Europe, the UK leads with 7.5 GWh of installed capacity and 48.7 GWh in the pipeline, while Italy, Germany, France, and Belgium show steady but more modest growth.

Despite being technological leaders, Japan (4 GWh pipeline) and South Korea (0.3 GWh) have relatively low planned BESS expansions.

According to Rho Motion, China will remain the dominant player in 2027, but its share of the total market is expected to decline to just over 50% based on the current project pipeline.

While the BESS market is expanding, challenges remain, including grid connection bottlenecks and the development of revenue streams in emerging markets.

Continue Reading

Subscribe

Popular