Energy Shift
The History of Energy Transitions
The History of Energy Transitions
Over the last 200 years, how we’ve gotten our energy has changed drastically.
These changes were driven by innovations like the steam engine, oil lamps, internal combustion engines, and the wide-scale use of electricity. The shift from a primarily agrarian global economy to an industrial one called for new sources to provide more efficient energy inputs.
The current energy transition is powered by the realization that avoiding the catastrophic effects of climate change requires a reduction in greenhouse gas emissions. This infographic provides historical context for the ongoing shift away from fossil fuels using data from Our World in Data and scientist Vaclav Smil.
Coal and the First Energy Transition
Before the Industrial Revolution, people burned wood and dried manure to heat homes and cook food, while relying on muscle power, wind, and water mills to grind grains. Transportation was aided by using carts driven by horses or other animals.
In the 16th and 17th centuries, the prices of firewood and charcoal skyrocketed due to shortages. These were driven by increased consumption from both households and industries as economies grew and became more sophisticated.
Consequently, industrializing economies like the UK needed a new, cheaper source of energy. They turned to coal, marking the beginning of the first major energy transition.
Year | Traditional Biomass % of Energy Mix | Coal % of Energy Mix |
---|---|---|
1800 | 98.3% | 1.7% |
1820 | 97.6% | 2.4% |
1840 | 95.1% | 4.9% |
1860 | 86.8% | 13.3% |
1880 | 73.0% | 26.7% |
1900 | 50.4% | 47.2% |
1920 | 38.4% | 54.4% |
1940 | 31.6% | 50.7% |
As coal use and production increased, the cost of producing it fell due to economies of scale. Simultaneously, technological advances and adaptations brought about new ways to use coal.
The steam engine—one of the major technologies behind the Industrial Revolution—was heavily reliant on coal, and homeowners used coal to heat their homes and cook food. This is evident in the growth of coal’s share of the global energy mix, up from 1.7% in 1800 to 47.2% in 1900.
The Rise of Oil and Gas
In 1859, Edwin L. Drake built the first commercial oil well in Pennsylvania, but it was nearly a century later that oil became a major energy source.
Before the mass production of automobiles, oil was mainly used for lamps. Oil demand from internal combustion engine vehicles started climbing after the introduction of assembly lines, and it took off after World War II as vehicle purchases soared.
Similarly, the invention of the Bunsen burner opened up new opportunities to use natural gas in households. As pipelines came into place, gas became a major source of energy for home heating, cooking, water heaters, and other appliances.
Year | Coal % of Energy Mix | Oil % of Energy Mix | Natural Gas % of Energy Mix |
---|---|---|---|
1950 | 44.2% | 19.1% | 7.3% |
1960 | 37.0% | 26.6% | 10.7% |
1970 | 25.7% | 40.2% | 14.5% |
1980 | 23.8% | 40.6% | 16.3% |
1990 | 24.4% | 35.5% | 18.4% |
2000 | 22.5% | 35.1% | 19.7% |
Coal lost the home heating market to gas and electricity, and the transportation market to oil.
Despite this, it became the world’s most important source of electricity generation and still accounts for over one-third of global electricity production today.
The Transition to Renewable Energy
Renewable energy sources are at the center of the ongoing energy transition. As countries ramp up their efforts to curb emissions, solar and wind energy capacities are expanding globally.
Here’s how the share of renewables in the global energy mix changed over the last two decades:
Year | Traditional Biomass | Renewables | Fossil Fuels | Nuclear Power |
---|---|---|---|---|
2000 | 10.2% | 6.6% | 77.3% | 5.9% |
2005 | 8.7% | 6.5% | 79.4% | 5.4% |
2010 | 7.7% | 7.7% | 79.9% | 4.7% |
2015 | 6.9% | 9.2% | 79.9% | 4.0% |
2020 | 6.7% | 11.2% | 78.0% | 4.0% |
In the decade between 2000 and 2010, the share of renewables increased by just 1.1%. But the growth is speeding up—between 2010 and 2020, this figure stood at 3.5%.
Furthermore, the current energy transition is unprecedented in both scale and speed, with climate goals requiring net-zero emissions by 2050. That essentially means a complete fade-out of fossil fuels in less than 30 years and an inevitable rapid increase in renewable energy generation.
Renewable energy capacity additions were on track to set an annual record in 2021, following a record year in 2020. Additionally, global energy transition investment hit a record of $755 billion in 2021.
However, history shows that simply adding generation capacity is not enough to facilitate an energy transition. Coal required mines, canals, and railroads; oil required wells, pipelines, and refineries; electricity required generators and an intricate grid.
Similarly, a complete shift to low-carbon sources requires massive investments in natural resources, infrastructure, and grid storage, along with changes in our energy consumption habits.
Energy Shift
Visualizing the Rise in Global Coal Consumption
China remains the largest coal consumer, making up 56% of the global total.
Visualizing the Rise in Global Coal Consumption
This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.
Despite efforts to decarbonize the economy, global coal consumption surpassed 164 exajoules for the first time in 2023. The fossil fuel still accounts for 26% of the world’s total energy consumption.
In this graphic, we show global coal consumption by region from 1965 to 2023, based on data from the Energy Institute.
China Leads in Coal Consumption
China is by far the largest consumer of coal, accounting for 56% of the global total, with 91.94 exajoules in 2023.
It is followed by India, with 21.98 exajoules, and the U.S., with 8.20 exajoules. In 2023, India exceeded the combined consumption of Europe and North America for the first time.
Regionally, North America and Europe have seen a decline in coal consumption since the 1990s, while the Asia-Pacific region experienced a surge in demand during the same period.
Year | Asia Pacific (Exajoules) | North America | Europe | Rest of the World | Total World |
---|---|---|---|---|---|
2013 | 114.14 | 19.48 | 15.86 | 11.47 | 160.95 |
2014 | 115.74 | 19.39 | 14.88 | 11.68 | 161.62 |
2015 | 115.00 | 16.89 | 14.24 | 11.11 | 157.25 |
2016 | 113.21 | 15.55 | 13.74 | 11.35 | 153.85 |
2017 | 115.67 | 15.30 | 13.29 | 11.23 | 155.50 |
2018 | 119.05 | 14.50 | 12.98 | 11.34 | 157.87 |
2019 | 121.94 | 12.49 | 11.06 | 11.45 | 156.95 |
2020 | 121.91 | 9.97 | 9.57 | 10.82 | 152.27 |
2021 | 127.75 | 11.24 | 10.44 | 11.12 | 160.56 |
2022 | 129.80 | 10.54 | 10.02 | 11.18 | 161.53 |
2023 | 135.70 | 8.83 | 8.39 | 11.11 | 164.03 |
Coal Production on the Rise
In addition to consumption, global coal production also reached its highest-ever level in 2023, at 179 exajoules.
The Asia-Pacific region accounted for nearly 80% of global output, with activity concentrated in Australia, China, India, and Indonesia.
China alone was responsible for just over half of total global production.
Learn More on the Voronoi App
If you want to learn more about fossil fuel consumption, check out this graphic showing the top 12 countries by fossil fuel consumption in 2023.
Energy Shift
Visualized: Global Coal Consumption by Region
For this graphic, Visual Capitalist has partnered with Range ETFs to explore world coal consumption in 2023 and find out who consumed the most coal.
World Coal Consumption by Region in 2023
Despite many nations transitioning away from fossil fuels, in 2023, world coal consumption reached a staggering 164 exajoules (EJ) of energy, a record high for any year.
For this graphic, Visual Capitalist has partnered with Range ETFs to explore the role coal plays in the global energy mix and determine which regions still consume large quantities of coal.
The Role of Coal in Global Energy
Coal is a significant player in the global energy mix, contributing 26% of the world’s energy in 2023, more than all non-fossil fuel sources combined. The only energy source that contributed more to the global energy mix was oil.
Here’s how that consumption breaks down by region:
Region | Consumption (EJ) | Share % |
---|---|---|
China | 91.9 | 56.1% |
Asia Pacific (excluding China) | 43.8 | 26.7% |
Americas | 10.0 | 6.1% |
Europe | 8.4 | 5.1% |
CIS* | 5.5 | 3.4% |
Africa | 4.1 | 2.5% |
Middle East | 0.4 | 0.2% |
Total | 164.0 | 100% |
Coal consumption has decreased in many regions. For example, both North America and Europe reduced their energy consumption from coal by 16% in 2023. However, a heavy reliance on coal in the Asia Pacific region has led to global coal consumption remaining essentially the same over the past 10 years.
In 2023, China increased its coal consumption from 88 EJ to nearly 92 EJ—totalling 56% of global coal consumption. This contributed significantly to Asia Pacific leading the world with a staggering 83% of global coal consumption.
The Importance of Coal
Easy access to existing infrastructure and reasonable prices have not only sustained global coal consumption over the last 10 years, but also paved the way for potential growth. Many developing nations are now expanding their coal consumption, presenting potential opportunities in the coal market.
For example, as per the Statistical Review of World Energy 2024, between 2022 and 2023, Bangladesh and Colombia saw double-digit percentage increases in year-over-year coal consumption: 41% and 53%, respectively.
Coal continues to play a critical role in the global energy mix, especially in the developing world, where its affordability makes it the current energy source of choice.
Learn more about the Range Global Coal Index ETF (COAL)
-
Electrification2 years ago
The Key Minerals in an EV Battery
-
Energy Shift2 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification1 year ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Energy Shift2 years ago
The Solar Power Duck Curve Explained
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification2 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification3 years ago
Breaking Down the Cost of an EV Battery Cell