Connect with us

Energy Shift

The History of Energy Transitions

Published

on

VCE_History_of_Energy_Transitions 666

The History of Energy Transitions

Over the last 200 years, how we’ve gotten our energy has changed drastically⁠.

These changes were driven by innovations like the steam engine, oil lamps, internal combustion engines, and the wide-scale use of electricity. The shift from a primarily agrarian global economy to an industrial one called for new sources to provide more efficient energy inputs.

The current energy transition is powered by the realization that avoiding the catastrophic effects of climate change requires a reduction in greenhouse gas emissions. This infographic provides historical context for the ongoing shift away from fossil fuels using data from Our World in Data and scientist Vaclav Smil.

Coal and the First Energy Transition

Before the Industrial Revolution, people burned wood and dried manure to heat homes and cook food, while relying on muscle power, wind, and water mills to grind grains. Transportation was aided by using carts driven by horses or other animals.

In the 16th and 17th centuries, the prices of firewood and charcoal skyrocketed due to shortages. These were driven by increased consumption from both households and industries as economies grew and became more sophisticated.

Consequently, industrializing economies like the UK needed a new, cheaper source of energy. They turned to coal, marking the beginning of the first major energy transition.

YearTraditional Biomass % of Energy MixCoal % of Energy Mix
180098.3%1.7%
182097.6%2.4%
184095.1%4.9%
186086.8%13.3%
188073.0%26.7%
190050.4%47.2%
192038.4%54.4%
194031.6%50.7%

As coal use and production increased, the cost of producing it fell due to economies of scale. Simultaneously, technological advances and adaptations brought about new ways to use coal.

The steam engine—one of the major technologies behind the Industrial Revolution—was heavily reliant on coal, and homeowners used coal to heat their homes and cook food. This is evident in the growth of coal’s share of the global energy mix, up from 1.7% in 1800 to 47.2% in 1900.

The Rise of Oil and Gas

In 1859, Edwin L. Drake built the first commercial oil well in Pennsylvania, but it was nearly a century later that oil became a major energy source.

Before the mass production of automobiles, oil was mainly used for lamps. Oil demand from internal combustion engine vehicles started climbing after the introduction of assembly lines, and it took off after World War II as vehicle purchases soared.

Similarly, the invention of the Bunsen burner opened up new opportunities to use natural gas in households. As pipelines came into place, gas became a major source of energy for home heating, cooking, water heaters, and other appliances.

YearCoal % of Energy MixOil % of Energy MixNatural Gas % of Energy Mix
195044.2%19.1%7.3%
196037.0%26.6%10.7%
197025.7%40.2%14.5%
198023.8%40.6%16.3%
199024.4%35.5%18.4%
200022.5%35.1%19.7%

Coal lost the home heating market to gas and electricity, and the transportation market to oil.

Despite this, it became the world’s most important source of electricity generation and still accounts for over one-third of global electricity production today.

The Transition to Renewable Energy

Renewable energy sources are at the center of the ongoing energy transition. As countries ramp up their efforts to curb emissions, solar and wind energy capacities are expanding globally.

Here’s how the share of renewables in the global energy mix changed over the last two decades:

YearTraditional BiomassRenewablesFossil FuelsNuclear Power
200010.2%6.6%77.3%5.9%
20058.7%6.5%79.4%5.4%
20107.7%7.7%79.9%4.7%
20156.9%9.2%79.9%4.0%
20206.7%11.2%78.0%4.0%

In the decade between 2000 and 2010, the share of renewables increased by just 1.1%. But the growth is speeding up—between 2010 and 2020, this figure stood at 3.5%.

Furthermore, the current energy transition is unprecedented in both scale and speed, with climate goals requiring net-zero emissions by 2050. That essentially means a complete fade-out of fossil fuels in less than 30 years and an inevitable rapid increase in renewable energy generation.

Renewable energy capacity additions were on track to set an annual record in 2021, following a record year in 2020. Additionally, global energy transition investment hit a record of $755 billion in 2021.

However, history shows that simply adding generation capacity is not enough to facilitate an energy transition. Coal required mines, canals, and railroads; oil required wells, pipelines, and refineries; electricity required generators and an intricate grid.

Similarly, a complete shift to low-carbon sources requires massive investments in natural resources, infrastructure, and grid storage, along with changes in our energy consumption habits.

Click for Comments

Energy Shift

Visualizing Copper Production by Country in 2023

Chile and Peru account for one-third of the world’s copper output.

Published

on

Voronoi graphic illustrating global copper production in 2023.

Visualizing Copper Production by Country in 2023

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Copper is considered an essential metal for the clean energy transition because it is a great conductor of electricity.

As a result, governments around the world have been encouraging the construction of new mines, and mining companies have been seeking new projects and acquiring existing mines to meet the growing demand.

In this graphic, we illustrate global copper production in 2023, based on data from the U.S. Geological Survey, Mineral Commodity Summaries, as of January 2024.

Most Copper Comes from South America

Chile and Peru account for one-third of the world’s copper output.

CountryRegion2023E Production
(Million tonnes)
🇨🇱 ChileSouth America5.0
🇵🇪 PeruSouth America2.6
🇨🇩 Congo (Kinshasa)Africa2.5
🇨🇳 ChinaAsia1.7
🇺🇸 United StatesNorth America1.1
🇷🇺 RussiaEurope/Asia0.9
🇦🇺 AustraliaOceania0.8
🇮🇩 IndonesiaAsia0.8
🇿🇲 ZambiaAfrica0.8
🇲🇽 MexicoNorth America0.7
🇰🇿 KazakhstanAsia0.6
🇨🇦 CanadaNorth America0.5
🇵🇱 PolandEurope0.4
🌍 Rest of World--3.1
World total (rounded)--21.5

Chile is also home to the two largest mines in the world, Escondida and Collahuasi.

Meanwhile, African countries have rapidly increased their production. The Democratic Republic of Congo, for example, transitioned from being a secondary copper producer in the late 1990s to becoming the third-largest producer by 2023.

Part of the growth in copper mining in Africa is attributed to high investment from China. Chinese mining companies represent 8% of Africa’s total output in the mining sector.

Within its territory, China has also seen a 277% growth in copper production over the last three decades.

In the U.S., Arizona is the leading copper-producing state, accounting for approximately 70% of domestic output. Copper is also mined in Michigan, Missouri, Montana, Nevada, New Mexico, and Utah.

Continue Reading

Energy Shift

Who’s Building the Most Solar Energy?

China’s solar capacity triples USA, nearly doubles EU.

Published

on

Chart showing installed solar photovoltaic (PV) capacity in China, the EU, and the U.S. between 2010 and 2022, measured in gigawatts (GW).

Who’s Building the Most Solar Energy?

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

In 2023, solar energy accounted for three-quarters of renewable capacity additions worldwide. Most of this growth occurred in Asia, the EU, and the U.S., continuing a trend observed over the past decade.

In this graphic, we illustrate the rise in installed solar photovoltaic (PV) capacity in China, the EU, and the U.S. between 2010 and 2022, measured in gigawatts (GW). Bruegel compiled the data..

Chinese Dominance

As of 2022, China’s total installed capacity stands at 393 GW, nearly double that of the EU’s 205 GW and surpassing the USA’s total of 113 GW by more than threefold in absolute terms.

Installed solar
capacity (GW)
ChinaEU27U.S.
2022393.0205.5113.0
2021307.0162.795.4
2020254.0136.976.4
2019205.0120.161.6
2018175.3104.052.0
2017130.896.243.8
201677.891.535.4
201543.687.724.2
201428.483.618.1
201317.879.713.3
20126.771.18.6
20113.153.35.6
20101.030.63.4

Since 2017, China has shown a compound annual growth rate (CAGR) of approximately 25% in installed PV capacity, while the USA has seen a CAGR of 21%, and the EU of 16%.

Additionally, China dominates the production of solar power components, currently controlling around 80% of the world’s solar panel supply chain.

In 2022, China’s solar industry employed 2.76 million individuals, with manufacturing roles representing approximately 1.8 million and the remaining 918,000 jobs in construction, installation, and operations and maintenance.

The EU industry employed 648,000 individuals, while the U.S. reached 264,000 jobs.

According to the IEA, China accounts for almost 60% of new renewable capacity expected to become operational globally by 2028.

Despite the phasing out of national subsidies in 2020 and 2021, deployment of solar PV in China is accelerating. The country is expected to reach its national 2030 target for wind and solar PV installations in 2024, six years ahead of schedule.

Continue Reading

Subscribe

Popular