Connect with us

Energy Shift

Explainer: The Science of Nuclear Fusion

Published

on

Explainer: The Science of Nuclear Fusion

The Science of Nuclear Fusion

U.S. scientists at the National Ignition Facility, part of the Lawrence Livermore National Laboratory (LLNL), announced a major breakthrough in nuclear fusion this week.

For the first time ever, scientists successfully produced more energy from a nuclear fusion experiment than the laser energy used to power it.

In the above infographic, we describe nuclear fusion and illustrate how this discovery may pave the future for a new form of clean and sustainable energy.

What is Nuclear Fusion?

Nuclear fusion powers the Sun and the stars, where immense forces compress and heat hydrogen plasma to about 100 million degrees Celsius. At this temperature, the lighter particles fuse into helium, releasing enormous amounts of energy.

Nuclear fusion is a fairly clean energy source as it does not produce harmful atmospheric emissions and only produces a small amount of short-lived radioactive waste.

Scientists have been trying to replicate it on Earth for almost 70 years, using isotopes of hydrogen—deuterium and tritium—to power fusion plants.

Since deuterium is found in seawater and tritium is attained through irradiating lithium (a common element used in batteries), the accessibility of these isotopes means that fusion could become a major source of energy in the future.

The amount of deuterium present in one liter of water, for example, could produce as much fusion energy as the combustion of 300 liters of oil.

Fusion fuel can replace these fuels

However, the real challenge is ensuring fusion power plants generate more energy than they consume.

The Challenge of Fusion Ignition

Fusion ignition is the term for a fusion reaction that becomes self-sustaining, in which the reaction creates more energy than it uses up. Up until now, scientists were only able to break even.

The National Ignition Facility used a special setup called inertial confinement fusion that involves bombarding a tiny pellet of hydrogen plasma with lasers to achieve fusion ignition.

LLNL’s experiment surpassed the fusion threshold by delivering 2.05 megajoules (MJ) of energy to the target, resulting in 3.15 MJ of fusion energy output, according to the U.S. Department of Energy.

Can Nuclear Fusion Energy Be Commercialized Soon?

In recent years, fusion technology has been attracting the attention of governments as well as private companies such as Chevron and Google. Bloomberg Intelligence estimates that the fusion market will eventually be worth $40 trillion.

Besides energy generation, fusion is expected to be used in other markets like space propulsion, marine propulsion, and medical and industrial heat.

However, according to the director of the Lawrence Livermore National Laboratory, Kim Budil, it will take “probably decades” before nuclear fusion energy is commercialized.

During the breakthrough announcement, she noted that it was necessary to produce “many many fusion ignition events per minute” as well as have a “robust system of drivers” before fusion can be commercialized successfully.

Subscribe to Visual Capitalist
Click for Comments

Energy Shift

Visualizing the Decline of Copper Usage in EVs

Copper content in EVs has steadily decreased over the past decade, even as overall copper demand rises due to the increasing adoption of EVs.

Published

on

The total copper per vehicle is projected to decrease by 38 kg between 2015 and 2030.

Visualizing the Decline of Copper Usage in EVs

Copper intensity in passenger battery electric vehicles (BEVs) has steadily decreased over the last decade, driven by numerous technological advancements alongside increasing usage of alternative materials such as aluminum.

In this graphic, we visualize the evolution of copper demand in various subcomponents of passenger battery electric vehicles (BEVs) from 2015 to 2030F, along with total global copper demand driven by EVs for the same period. This data comes exclusively from Benchmark Mineral Intelligence.

Copper Intensity Per Car

According to Benchmark Mineral Intelligence, the copper intensity per vehicle is expected to decline by almost 38 kg, from 99 kg in 2015 to 62 kg by 2030.

YearWiringMotorCopper FoilBusbarAuxiliary MotorCharging CableTotal
201530841.2613.232.873.9699.32
201629838.6813.372.853.9295.82
201728732.6712.722.843.9087.13
201827726.3911.872.823.8878.96
201926728.0010.852.783.8278.45
202025724.7110.242.733.7673.44
202124625.279.292.693.7070.95
202223728.448.562.653.6473.29
202322729.878.122.613.5873.18
2024F21727.737.672.563.5269.48
2025F20727.797.192.522.5167.01
2026F20727.786.632.483.4167.30
2027F19827.556.152.443.3566.49
2028F18826.775.702.403.3064.17
2029F18826.175.512.393.2863.35
2030F17825.635.442.373.2661.70

One of the most significant factors driving this decline is thrifting, where engineers and manufacturers continuously improve the efficiency and performance of various components, leading to reduced copper usage. A key example of this is in battery production, where the thickness of copper foil used in battery anodes has significantly decreased.

In 2015, Benchmark estimated copper foil usage was just over 41 kg per vehicle (at an average thickness of 10 microns), but by 2030, it is projected to fall to 26 kg as manufacturers continue to adopt thinner foils.

Similarly, automotive wiring systems have become more localized, with advances in high-voltage wiring and modular integration allowing for reduced copper content in wiring harnesses.

Copper used in wiring has dropped from 30 kg per vehicle in 2015 to a projected 17 kg by 2030.

Newer, more compact power electronics and improved thermal management in motors and charging cables have also contributed to the reduction in copper usage.

Substitution has also played a role, with alternatives such as aluminum increasingly being used in components like busbars, wiring harnesses, and charging cable applications.

Aluminum’s lighter weight and lower cost have made it a practical alternative to copper in specific applications, though the additional space required to achieve the same level of conductivity can limit its use in certain cases.

Benchmark estimates that copper used in automotive wire harnesses has declined by 30% between 2015 and 2024.

The Road Ahead

Despite reductions in per-vehicle copper usage, the outlook for copper demand from the EV sector remains strong due to the sector’s growth.

YearEV Sector Copper Demand (tonnes)
201556K
201682K
2017111K
2018166K
2019179K
2020237K
2021447K
2022696K
2023902K
2024F1.0M
2025F1.2M
2026F1.5M
2027F1.7M
2028F2.0M
2029F2.2M
2030F2.5M

Benchmark’s analysis indicates that by 2030, copper demand driven by EVs alone will exceed 2.5 million tonnes, securing copper’s critical role in the transition to a low-carbon future.

Continue Reading

Energy Shift

Visualizing the Rise in Global Coal Consumption

China remains the largest coal consumer, making up 56% of the global total.

Published

on

In this graphic, we show global coal consumption by region from 1965 to 2020.

Visualizing the Rise in Global Coal Consumption

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Despite efforts to decarbonize the economy, global coal consumption surpassed 164 exajoules for the first time in 2023. The fossil fuel still accounts for 26% of the world’s total energy consumption.

In this graphic, we show global coal consumption by region from 1965 to 2023, based on data from the Energy Institute.

China Leads in Coal Consumption

China is by far the largest consumer of coal, accounting for 56% of the global total, with 91.94 exajoules in 2023.

It is followed by India, with 21.98 exajoules, and the U.S., with 8.20 exajoules. In 2023, India exceeded the combined consumption of Europe and North America for the first time.

Regionally, North America and Europe have seen a decline in coal consumption since the 1990s, while the Asia-Pacific region experienced a surge in demand during the same period.

YearAsia Pacific (Exajoules)North AmericaEuropeRest of the WorldTotal World
2013114.1419.4815.8611.47160.95
2014115.7419.3914.8811.68161.62
2015115.0016.8914.2411.11157.25
2016113.2115.5513.7411.35153.85
2017115.6715.3013.2911.23155.50
2018119.0514.5012.9811.34157.87
2019121.9412.4911.0611.45156.95
2020121.919.979.5710.82152.27
2021127.7511.2410.4411.12160.56
2022129.8010.5410.0211.18161.53
2023135.708.838.3911.11164.03

Coal Production on the Rise

In addition to consumption, global coal production also reached its highest-ever level in 2023, at 179 exajoules.

The Asia-Pacific region accounted for nearly 80% of global output, with activity concentrated in Australia, China, India, and Indonesia.

China alone was responsible for just over half of total global production.

Learn More on the Voronoi App 

If you want to learn more about fossil fuel consumption, check out this graphic showing the top 12 countries by fossil fuel consumption in 2023.

Continue Reading
Gain insight on the megatrends driving commodity demand

Subscribe

Popular