Connect with us

Energy Shift

Rare Earth Elements: Where in the World Are They?

Published

on

Rare Earth Elements Reserves

Rare Earths Elements: Where in the World Are They?

Rare earth elements are a group of metals that are critical ingredients for a greener economy, and the location of the reserves for mining are increasingly important and valuable.

This infographic features data from the United States Geological Society (USGS) which reveals the countries with the largest known reserves of rare earth elements (REEs).

What are Rare Earth Metals?

REEs, also called rare earth metals or rare earth oxides, or lanthanides, are a set of 17 silvery-white soft heavy metals.

The 17 rare earth elements are: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), scandium (Sc), and yttrium (Y).

Scandium and yttrium are not part of the lanthanide family, but end users include them because they occur in the same mineral deposits as the lanthanides and have similar chemical properties.

The term “rare earth” is a misnomer as rare earth metals are actually abundant in the Earth’s crust. However, they are rarely found in large, concentrated deposits on their own, but rather among other elements instead.

Rare Earth Elements, How Do They Work?

Most rare earth elements find their uses as catalysts and magnets in traditional and low-carbon technologies. Other important uses of rare earth elements are in the production of special metal alloys, glass, and high-performance electronics.

Alloys of neodymium (Nd) and samarium (Sm) can be used to create strong magnets that withstand high temperatures, making them ideal for a wide variety of mission critical electronics and defense applications.

End-use% of 2019 Rare Earth Demand
Permanent Magnets38%
Catalysts23%
Glass Polishing Powder and Additives13%
Metallurgy and Alloys8%
Battery Alloys9%
Ceramics, Pigments and Glazes5%
Phosphors3%
Other4%
Source

The strongest known magnet is an alloy of neodymium with iron and boron. Adding other REEs such as dysprosium and praseodymium can change the performance and properties of magnets.

Hybrid and electric vehicle engines, generators in wind turbines, hard disks, portable electronics and cell phones require these magnets and elements. This role in technology makes their mining and refinement a point of concern for many nations.

For example, one megawatt of wind energy capacity requires 171 kg of rare earths, a single U.S. F-35 fighter jet requires about 427 kg of rare earths, and a Virginia-class nuclear submarine uses nearly 4.2 tonnes.

Global Reserves of Rare Earth Minerals

China tops the list for mine production and reserves of rare earth elements, with 44 million tons in reserves and 140,000 tons of annual mine production.

While Vietnam and Brazil have the second and third most reserves of rare earth metals with 22 million tons in reserves and 21 million tons, respectively, their mine production is among the lowest of all the countries at only 1,000 tons per year each.

CountryMine Production 2020Reserves% of Total Reserves
China140,00044,000,00038.0%
Vietnam1,00022,000,00019.0%
Brazil1,00021,000,00018.1%
Russia2,70012,000,00010.4%
India3,0006,900,0006.0%
Australia17,0004,100,0003.5%
United States38,0001,500,0001.3%
Greenland-1,500,0001.3%
Tanzania-890,0000.8%
Canada-830,0000.7%
South Africa-790,0000.7%
Other Countries100310,0000.3%
Burma30,000N/AN/A
Madagascar8,000N/AN/A
Thailand2,000N/AN/A
Burundi500N/AN/A
World Total243,300115,820,000100%

While the United States has 1.5 million tons in reserves, it is largely dependent on imports from China for refined rare earths.

Ensuring a Global Supply

In the rare earth industry, China’s dominance</a > has been no accident. Years of research and industrial policy helped the nation develop a superior position in the market, and now the country has the ability to control production and the global availability of these valuable metals.

This tight control of the supply of these important metals has the world searching for their own supplies. With the start of mining operations in other countries, China’s share of global production has fallen from 92% in 2010 to 58%< in 2020. However, China has a strong foothold in the supply chain and produced 85% of the world’s refined rare earths in 2020.

China awards production quotas to only six state-run companies:

  • China Minmetals Rare Earth Co
  • Chinalco Rare Earth & Metals Co
  • Guangdong Rising Nonferrous
  • China Northern Rare Earth Group
  • China Southern Rare Earth Group
  • Xiamen Tungsten

As the demand for REEs increases, the world will need tap these reserves. This graphic could provide clues as to the next source of rare earth elements.

Subscribe to Visual Capitalist
Click for Comments

Energy Shift

Mapped: Solar and Wind Power by Country

Wind and solar generate over a tenth of the world’s electricity. Taken together, they are the fourth-largest source of electricity, behind coal, gas, and hydro.

Published

on

Solar and Wind per Country

Mapped: Solar and Wind Power by Country

Wind and solar generate over a tenth of the world’s electricity. Taken together, they are the fourth-largest source of electricity, behind coal, gas, and hydro.

This infographic based on data from Ember shows the rise of electricity from these two clean sources over the last decade.

Europe Leads in Wind and Solar

Wind and solar generated 10.3% of global electricity for the first time in 2021, rising from 9.3% in 2020, and doubling their share compared to 2015 when the Paris Climate Agreement was signed.

In fact, 50 countries (26%) generated over a tenth of their electricity from wind and solar in 2021, with seven countries hitting this landmark for the first time: China, Japan, Mongolia, Vietnam, Argentina, Hungary, and El Salvador.

Denmark and Uruguay achieved 52% and 47% respectively, leading the way in technology for high renewable grid integration.

RankTop Countries Solar/Wind Power Share
#1🇩🇰 Denmark 51.9%
#2🇺🇾 Uruguay 46.7%
#3🇱🇺 Luxembourg 43.4%
#4🇱🇹 Lithuania 36.9%
#5🇪🇸 Spain 32.9%
#6🇮🇪 Ireland 32.9%
#7🇵🇹 Portugal 31.5%
#8🇩🇪 Germany 28.8%
#9🇬🇷 Greece 28.7%
#10🇬🇧 United Kingdom 25.2%

From a regional perspective, Europe leads with nine of the top 10 countries. On the flipside, the Middle East and Africa have the fewest countries reaching the 10% threshold.

Further Renewables Growth Needed to meet Global Climate Goals

The electricity sector was the highest greenhouse gas emitting sector in 2020.

According to the International Energy Agency (IEA), the sector needs to hit net zero globally by 2040 to achieve the Paris Agreement’s goals of limiting global heating to 1.5 degrees. And to hit that goal, wind and solar power need to grow at nearly a 20% clip each year to 2030.

Despite the record rise in renewables, solar and wind electricity generation growth currently doesn’t meet the required marks to reach the Paris Agreement’s goals.

In fact, when the world faced an unprecedented surge in electricity demand in 2021, only 29% of the global rise in electricity demand was met with solar and wind.

Transition Underway

Even as emissions from the electricity sector are at an all-time high, there are signs that the global electricity transition is underway.

Governments like the U.S., Germany, UK, and Canada are planning to increase their share of clean electricity within the next decade and a half. Investments are also coming from the private sector, with companies like Amazon and Apple extending their positions on renewable energy to become some of the biggest buyers overall.

More wind and solar are being added to grids than ever, with renewables expected to provide the majority of clean electricity needed to phase out fossil fuels.

Continue Reading

Energy Shift

How Far Are We From Phasing Out Coal?

In 2021 coal-fired electricity generation reached all-time highs. Here’s the pathway that would be needed to phase it out of the energy mix.

Published

on

Phasing_Out_Coal

How Far Are We from Phasing Out Coal?

At the COP26 conference last year, 40 nations agreed to phase coal out of their energy mixes.

Despite this, in 2021, coal-fired electricity generation reached all-time highs globally, showing that eliminating coal from the energy mix will not be a simple task.

This infographic shows the aggressive phase-out of coal power that would be required in order to reach net zero goals by 2050, based on an analysis by Ember that uses data provided by the International Energy Agency (IEA).

Low-Cost Comes at a High Environmental Cost

Coal-powered electricity generation rose by 9.0% in 2021 to 10,042 Terawatt-hours (TWh), marking the biggest percentage rise since 1985.

The main reason is cost. Coal is the world’s most affordable energy fuel. Unfortunately, low-cost energy comes at a high cost for the environment, with coal being the largest source of energy-related CO2 emissions.

China has the highest coal consumption, making up 54% of the world’s coal electricity generation. The country’s consumption jumped 12% between 2010 and 2020, despite coal making up a lower percentage of the country’s energy mix in relative terms.

Top Consumers2020 Consumption (Exajoules) Share of global consumption
China 🇨🇳82.354.3%
India 🇮🇳17.511.6%
United States 🇺🇸9.26.1%
Japan 🇯🇵4.63.0%
South Africa 🇿🇦3.52.3%
Russia 🇷🇺3.32.2%
Indonesia 🇮🇩3.32.2%
South Korea 🇰🇷3.02.0%
Vietnam 🇻🇳2.11.4%
Germany 🇩🇪1.81.2%

Together, China and India account for 66% of global coal consumption and emit about 35% of the world’s greenhouse gasses (GHG). If you add the United States to the mix, this goes up to 72% of coal consumption and 49% of GHGs.

How Urgent is to Phase Out Coal?

According to the United Nations, emissions from current and planned fossil energy infrastructure are already more than twice the amount that would push the planet over 1.5°C of global heating, a level that scientists say could bring more intense heat, fire, storms, flooding, and drought than the present 1.2°C.

Apart from being the largest source of CO2 emissions, coal combustion is also a major threat to public health because of the fine particulate matter released into the air.

As just one example of this impact, a recent study from Harvard University estimates air pollution from fossil fuel combustion is responsible for 1 in 5 deaths globally.

The Move to Renewables

Coal-powered electricity generation must fall by 13% every year until 2030 to achieve the Paris Agreement’s goals of keeping global heating to only 1.5 degrees.

To reach the mark, countries would need to speed up the shift from their current carbon-intensive pathways to renewable energy sources like wind and solar.

How fast the transition away from coal will be achieved depends on a complicated balance between carbon emissions cuts and maintaining economic growth, the latter of which is still largely dependent on coal power.

Continue Reading

Subscribe

Latest News

The latest news from our sponsors:

Popular