Connect with us

Electrification

Ranked: The Top 10 EV Battery Manufacturers

Published

on

Top 10 EV Battery Manufacturers

The Top EV Battery Manufacturers

Ranked: The Top 10 EV Battery Manufacturers

With increasing interest in electric vehicles (EVs) from consumers, the market for lithium-ion EV batteries is now a $27 billion per year business.

According to industry experts, high demand has boosted battery manufacturersโ€™ profits and brought heavy competition to the market. And by 2027, the market could further grow to $127 billion as consumers embrace more affordable EVs.

Asian Powerhouses of Battery Production

Besides being a manufacturing powerhouse of vehicle parts, Asia is fast becoming a hotbed for innovation in the battery sector.

No wonder, the top 10 EV battery manufacturers by market share are all headquartered in Asian countries, concentrated in China, Japan, and South Korea.

RankCompany2021 Market ShareCountry
#1CATL32.5%China ๐Ÿ‡จ๐Ÿ‡ณ
#2LG Energy Solution21.5%Korea ๐Ÿ‡ฐ๐Ÿ‡ท
#3Panasonic14.7%Japan ๐Ÿ‡ฏ๐Ÿ‡ต
#4BYD6.9%China ๐Ÿ‡จ๐Ÿ‡ณ
#5Samsung SDI5.4%Korea ๐Ÿ‡ฐ๐Ÿ‡ท
#6SK Innovation5.1%Korea ๐Ÿ‡ฐ๐Ÿ‡ท
#7CALB2.7%China ๐Ÿ‡จ๐Ÿ‡ณ
#8AESC2.0%Japan ๐Ÿ‡ฏ๐Ÿ‡ต
#9Guoxuan2.0%China ๐Ÿ‡จ๐Ÿ‡ณ
#10PEVE1.3%Japan ๐Ÿ‡ฏ๐Ÿ‡ต
n/aOther6.1%ROW

According to data from SNE Research, the top three battery makersโ€”CATL, LG, and, Panasonicโ€”combine for nearly 70% of the EV battery manufacturing market.

Chinese Dominance

Based in Chinaโ€™s coastal city of Ningde, best known for its tea plantations, Contemporary Amperex Technology Co. Limited (CATL) has risen in less than 10 years to become the biggest global battery group.

The Chinese company provides lithium iron phosphate (LFP) batteries to Tesla, Peugeot, Hyundai, Honda, BMW, Toyota, Volkswagen, and Volvo, and shares in the company gained 160% in 2020, lifting CATLโ€™s market capitalization to almost $186 billion.

CATL counts nine people on the Forbes list of global billionaires. Its founder, Zeng Yuqun, born in a poor village in 1968 during the Chinese Cultural Revolution, is now worth almost as much as Alibaba founder Jack Ma.

China also hosts the fourth biggest battery manufacturer, Warren Buffett-backed BYD.

Competition for CATL Outside China

Outside China, CATL faces tough competition from established players LG and Panasonic, respectively second and third on our ranking.

With more than 100 years of history, Panasonic has Tesla and Toyota among its battery buyers. LG pouch cells are used in EVs from Jaguar, Audi, Porsche, Ford, and GM.

U.S. and Europeโ€™s Plans for Battery Production

President Joe Bidenโ€™s strategy to make the United States a powerhouse in electric vehicles includes boosting domestic production of batteries. European countries are also looking to reduce decades of growing reliance on China.

As Western countries speed up, new players are expected to rise.

A host of next-generation battery technologies are already being developed by U.S. companies, including Ionic Materials, QuantumScape, Sila Nanotechnologies, Sion Power, and, Sionic Energy.

Any direction the market moves, certainly the forecast is bright for battery producers.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.
Continue Reading
Comments

Electrification

Visualizing the Natural Graphite Supply Problem

In 2020, China produced 59% of natural graphite and over 80% of battery anode material. Here’s a look at the graphite supply problem.

Published

on

natural graphite

Visualizing the Natural Graphite Supply Problem

Graphite is a critical mineral for lithium-ion batteries, and its battery demand is expected to grow ten-fold by 2030.

Meeting this increasing demand will require a higher supply of both natural graphite and its synthetic counterpart. However, graphiteโ€™s entire supply chain is heavily reliant on China, which makes it vulnerable to disruptions while creating environmental challenges.

This infographic from our sponsor Northern Graphite highlights Chinaโ€™s stronghold over the graphite supply chain and outlines the need for new natural graphite mines.

Chinaโ€™s Dominance in the Graphite Supply Chain

From mining natural graphite to manufacturing battery anodes, China dominates every stage of the graphite supply chain.

For example, in 2020, 59% of global natural graphite production came from China. Mozambique, the second-largest producer, churned out 120,000 tonnesโ€”just one-fifth of Chinese production.

Country2020E production, tonnes% of total
China ๐Ÿ‡จ๐Ÿ‡ณ650,00059.1%
Mozambique ๐Ÿ‡ฒ๐Ÿ‡ฟ120,00010.9%
Brazil ๐Ÿ‡ง๐Ÿ‡ท95,0008.6%
Madagascar ๐Ÿ‡ฒ๐Ÿ‡ฌ47,0004.3%
India ๐Ÿ‡ฎ๐Ÿ‡ณ34,0003.1%
Russia ๐Ÿ‡ท๐Ÿ‡บ24,0002.2%
Ukraine ๐Ÿ‡บ๐Ÿ‡ฆ19,0001.7%
Norway ๐Ÿ‡ณ๐Ÿ‡ด15,0001.4%
Pakistan ๐Ÿ‡ต๐Ÿ‡ฐ13,0001.2%
Canada ๐Ÿ‡จ๐Ÿ‡ฆ10,0000.9%
Rest of the World ๐ŸŒŽ73,0006.6%
Total1,100,000100%

Chinaโ€™s massive output makes the other top nine countries look substantially smaller in terms of natural graphite production. Moreover, China also dominates the manufacturing of synthetic graphite and the conversion of graphite into anode material for batteries.

In 2018, China produced nearly 80% of all synthetic graphite, and in 2019, it was responsible for 86% of all battery anode material production. This dependence on graphite supply from China puts the supply chain at risk of political disruptions and makes it unsustainable for the long term.

Unsustainable Production: Natural Graphite vs Synthetic Graphite

The carbon footprint of manufacturing partly depends on the source of energy used in production.

Coal dominates Chinaโ€™s energy mix with a 58% share, followed by petroleum and other liquids. This increases the carbon footprint of all production and especially that of synthetic graphite, which involves energy-intensive heat treatment of petroleum coke.

Energy sourceType% of China's energy consumption (2019)
Coal Fossil fuel58%
Petroleum and other liquidsFossil fuel20%
Hydro Renewable8%
Natural gasFossil fuel8%
Other renewablesRenewable5%
NuclearNon-renewable2%
TotalN/A100%

Percentages may not add to 100% due to rounding.

One study found that producing one kg of synthetic graphite releases 4.9kg of carbon dioxide into the atmosphere, in addition to smaller amounts of sulfur oxide, nitrogen oxide, and particulate matter. While the carbon footprint of natural graphite is substantially smaller, itโ€™s likely that Chinaโ€™s dependence on coal contributes to emissions from production.

Furthermore, concentrated production in China means that all this graphite travels long distances before reaching Western markets like the United States. These extensive shipping distances further exacerbate the risk of disruptions in the graphite supply chain.

The Need for New Sources

As the demand for graphite increases, developing a resilient graphite supply chain is crucial to the European Union and the U.S., both of which have declared graphite a critical mineral.

New graphite mines outside China will be key to meeting graphiteโ€™s rising demand and combating a potential supply deficit.

Northern Graphite is positioned to deliver natural graphite in a secure, sustainable, and transparent manner for the green economy.

Continue Reading

Electrification

Mapped: Solar Power by Country in 2021

In 2020, solar power saw its largest-ever annual capacity expansion at 127 gigawatts. Here’s a snapshot of solar power capacity by country.

Published

on

Solar Power by Country

Mapped: Solar Power by Country in 2021

The world is adopting renewable energy at an unprecedented pace, and solar power is leading the way.

Despite a 4.5% fall in global energy demand in 2020, renewable energy technologies showed promising progress. While the growth in renewables was strong across the board, solar power led from the front with 127 gigawatts installed in 2020, its largest-ever annual capacity expansion.

The above infographic uses data from the International Renewable Energy Agency (IRENA) to map solar power capacity by country in 2021. This includes both solar photovoltaic (PV) and concentrated solar power capacity.

The Solar Power Leaderboard

From the Americas to Oceania, countries in virtually every continent (except Antarctica) added more solar to their mix last year. Hereโ€™s a snapshot of solar power capacity by country at the beginning of 2021:

CountryInstalled capacity, megawattsWatts* per capita% of world total
China ๐Ÿ‡จ๐Ÿ‡ณ 254,35514735.6%
U.S. ๐Ÿ‡บ๐Ÿ‡ธ 75,57223110.6%
Japan ๐Ÿ‡ฏ๐Ÿ‡ต 67,0004989.4%
Germany ๐Ÿ‡ฉ๐Ÿ‡ช 53,7835937.5%
India ๐Ÿ‡ฎ๐Ÿ‡ณ 39,211325.5%
Italy ๐Ÿ‡ฎ๐Ÿ‡น 21,6003453.0%
Australia ๐Ÿ‡ฆ๐Ÿ‡บ 17,6276372.5%
Vietnam ๐Ÿ‡ป๐Ÿ‡ณ 16,504602.3%
South Korea ๐Ÿ‡ฐ๐Ÿ‡ท 14,5752172.0%
Spain ๐Ÿ‡ช๐Ÿ‡ธ 14,0891862.0%
United Kingdom ๐Ÿ‡ฌ๐Ÿ‡ง 13,5632001.9%
France ๐Ÿ‡ซ๐Ÿ‡ท 11,7331481.6%
Netherlands ๐Ÿ‡ณ๐Ÿ‡ฑ 10,2133961.4%
Brazil ๐Ÿ‡ง๐Ÿ‡ท 7,881221.1%
Turkey ๐Ÿ‡น๐Ÿ‡ท 6,668730.9%
South Africa ๐Ÿ‡ฟ๐Ÿ‡ฆ 5,990440.8%
Taiwan ๐Ÿ‡น๐Ÿ‡ผ 5,8171720.8%
Belgium ๐Ÿ‡ง๐Ÿ‡ช 5,6463940.8%
Mexico ๐Ÿ‡ฒ๐Ÿ‡ฝ 5,644350.8%
Ukraine ๐Ÿ‡บ๐Ÿ‡ฆ 5,3601140.8%
Poland ๐Ÿ‡ต๐Ÿ‡ฑ 3,936340.6%
Canada ๐Ÿ‡จ๐Ÿ‡ฆ 3,325880.5%
Greece ๐Ÿ‡ฌ๐Ÿ‡ท 3,2472580.5%
Chile ๐Ÿ‡จ๐Ÿ‡ฑ 3,2051420.4%
Switzerland ๐Ÿ‡จ๐Ÿ‡ญ 3,1182950.4%
Thailand ๐Ÿ‡น๐Ÿ‡ญ 2,988430.4%
United Arab Emirates ๐Ÿ‡ฆ๐Ÿ‡ช 2,5391850.4%
Austria ๐Ÿ‡ฆ๐Ÿ‡น 2,2201780.3%
Czech Republic ๐Ÿ‡จ๐Ÿ‡ฟ 2,0731940.3%
Hungary ๐Ÿ‡ญ๐Ÿ‡บ 1,9531310.3%
Egypt ๐Ÿ‡ช๐Ÿ‡ฌ 1,694170.2%
Malaysia ๐Ÿ‡ฒ๐Ÿ‡พ 1,493280.2%
Israel ๐Ÿ‡ฎ๐Ÿ‡ฑ 1,4391340.2%
Russia ๐Ÿ‡ท๐Ÿ‡บ 1,42870.2%
Sweden ๐Ÿ‡ธ๐Ÿ‡ช 1,417630.2%
Romania ๐Ÿ‡ท๐Ÿ‡ด 1,387710.2%
Jordan ๐Ÿ‡ฏ๐Ÿ‡ด 1,3591000.2%
Denmark ๐Ÿ‡ฉ๐Ÿ‡ฐ 1,3001860.2%
Bulgaria ๐Ÿ‡ง๐Ÿ‡ฌ 1,0731520.2%
Philippines ๐Ÿ‡ต๐Ÿ‡ญ 1,04890.1%
Portugal ๐Ÿ‡ต๐Ÿ‡น 1,025810.1%
Argentina ๐Ÿ‡ฆ๐Ÿ‡ท 764170.1%
Pakistan ๐Ÿ‡ต๐Ÿ‡ฐ 73760.1%
Morocco ๐Ÿ‡ฒ๐Ÿ‡ฆ 73460.1%
Slovakia ๐Ÿ‡ธ๐Ÿ‡ฐ 593870.1%
Honduras ๐Ÿ‡ญ๐Ÿ‡ณ 514530.1%
Algeria ๐Ÿ‡ฉ๐Ÿ‡ฟ 448100.1%
El Salvador ๐Ÿ‡ธ๐Ÿ‡ป 429660.1%
Iran ๐Ÿ‡ฎ๐Ÿ‡ท 41450.1%
Saudi Arabia ๐Ÿ‡ธ๐Ÿ‡ฆ 409120.1%
Finland ๐Ÿ‡ซ๐Ÿ‡ฎ 391390.1%
Dominican Republic ๐Ÿ‡ฉ๐Ÿ‡ด 370340.1%
Peru ๐Ÿ‡ต๐Ÿ‡ช 331100.05%
Singapore ๐Ÿ‡ธ๐Ÿ‡ฌ 329450.05%
Bangladesh ๐Ÿ‡ง๐Ÿ‡ฉ 30120.04%
Slovenia ๐Ÿ‡ธ๐Ÿ‡ฎ 2671280.04%
Uruguay ๐Ÿ‡บ๐Ÿ‡พ 256740.04%
Yemen ๐Ÿ‡พ๐Ÿ‡ช 25380.04%
Iraq ๐Ÿ‡ฎ๐Ÿ‡ถ 21650.03%
Cambodia ๐Ÿ‡ฐ๐Ÿ‡ญ 208120.03%
Cyprus ๐Ÿ‡จ๐Ÿ‡พ 2001470.03%
Panama ๐Ÿ‡ต๐Ÿ‡ฆ 198460.03%
Luxembourg ๐Ÿ‡ฑ๐Ÿ‡บ 1952440.03%
Malta ๐Ÿ‡ฒ๐Ÿ‡น 1843120.03%
Indonesia ๐Ÿ‡ฎ๐Ÿ‡ฉ 17210.02%
Cuba ๐Ÿ‡จ๐Ÿ‡บ 163140.02%
Belarus ๐Ÿ‡ง๐Ÿ‡พ 159170.02%
Senegal ๐Ÿ‡ธ๐Ÿ‡ณ 15580.02%
Norway ๐Ÿ‡ณ๐Ÿ‡ด 152170.02%
Lithuania ๐Ÿ‡ฑ๐Ÿ‡น 148370.02%
Namibia ๐Ÿ‡ณ๐Ÿ‡ฆ 145550.02%
New Zealand ๐Ÿ‡ณ๐Ÿ‡ฟ 142290.02%
Estonia ๐Ÿ‡ช๐Ÿ‡ช 130980.02%
Bolivia ๐Ÿ‡ง๐Ÿ‡ด 120100.02%
Oman ๐Ÿ‡ด๐Ÿ‡ฒ 109210.02%
Colombia ๐Ÿ‡จ๐Ÿ‡ด 10720.01%
Kenya ๐Ÿ‡ฐ๐Ÿ‡ช 10620.01%
Guatemala ๐Ÿ‡ฌ๐Ÿ‡น10160.01%
Croatia ๐Ÿ‡ญ๐Ÿ‡ท 85170.01%
World total ๐ŸŒŽ 713,97083100.0%

*1 megawatt = 1,000,000 watts.

China is the undisputed leader in solar installations, with over 35% of global capacity. What’s more, the country is showing no signs of slowing down. It has the worldโ€™s largest wind and solar project in the pipeline, which could add another 400,000MW to its clean energy capacity.

Following China from afar is the U.S., which recently surpassed 100,000MW of solar power capacity after installing another 50,000MW in the first three months of 2021. Annual solar growth in the U.S. has averaged an impressive 42% over the last decade. Policies like the solar investment tax credit, which offers a 26% tax credit on residential and commercial solar systems, have helped propel the industry forward.

Although Australia hosts a fraction of Chinaโ€™s solar capacity, it tops the per capita rankings due to its relatively low population of 26 million people. The Australian continent receives the highest amount of solar radiation of any continent, and over 30% of Australian households now have rooftop solar PV systems.

China: The Solar Champion

In 2020, President Xi Jinping stated that China aims to be carbon neutral by 2060, and the country is taking steps to get there.

China is a leader in the solar industry, and it seems to have cracked the code for the entire solar supply chain. In 2019, Chinese firms produced 66% of the worldโ€™s polysilicon, the initial building block of silicon-based photovoltaic (PV) panels. Furthermore, more than three-quarters of solar cells came from China, along with 72% of the worldโ€™s PV panels.

With that said, itโ€™s no surprise that 5 of the worldโ€™s 10 largest solar parks are in China, and it will likely continue to build more as it transitions to carbon neutrality.

Whatโ€™s Driving the Rush for Solar Power?

The energy transition is a major factor in the rise of renewables, but solarโ€™s growth is partly due to how cheap it has become over time. Solar energy costs have fallen exponentially over the last decade, and itโ€™s now the cheapest source of new energy generation.

Since 2010, the cost of solar power has seen a 85% decrease, down from $0.28 to $0.04 per kWh. According to MIT researchers, economies of scale have been the single-largest factor in continuing the cost decline for the last decade. In other words, as the world installed and made more solar panels, production became cheaper and more efficient.

This year, solar costs are rising due to supply chain issues, but the rise is likely to be temporary as bottlenecks resolve.

Continue Reading

Subscribe

Receive updates when new visuals go live:

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Latest News

The latest news from our sponsors:

Popular