Energy Shift
Mapped: Renewable Energy and Battery Installations in the U.S. in 2023
Renewable and Battery Installations in the U.S. in 2023
Renewable energy, in particular solar power, is set to shine in 2023. This year, the U.S. plans to get over 80% of its new energy installations from sources like battery, solar, and wind.
The above map uses data from EIA to highlight planned U.S. renewable energy and battery storage installations by state for 2023.
Texas and California Leading in Renewable Energy
Nearly every state in the U.S. has plans to produce new clean energy in 2023, but it’s not a surprise to see the two most populous states in the lead of the pack.
Even though the majority of its power comes from natural gas, Texas currently leads the U.S. in planned renewable energy installations. The state also has plans to power nearly 900,000 homes using new wind energy.
California is second, which could be partially attributable to the passing of Title 24, an energy code that makes it compulsory for new buildings to have the equipment necessary to allow the easy installation of solar panels, battery storage, and EV charging.
New solar power in the U.S. isn’t just coming from places like Texas and California. In 2023, Ohio will add 1,917 MW of new nameplate solar capacity, with Nevada and Colorado not far behind.
Top 10 States | Battery (MW) | Solar (MW) | Wind (MW) | Total (MW) |
---|---|---|---|---|
Texas | 1,981 | 6,462 | 1,941 | 10,385 |
California | 4,555 | 4,293 | 123 | 8,970 |
Nevada | 678 | 1,596 | 0 | 2,274 |
Ohio | 12 | 1,917 | 5 | 1,934 |
Colorado | 230 | 1,187 | 200 | 1,617 |
New York | 58 | 509 | 559 | 1,125 |
Wisconsin | 4 | 939 | 92 | 1,034 |
Florida | 3 | 978 | 0 | 980 |
Kansas | 0 | 0 | 843 | 843 |
Illinois | 0 | 363 | 477 | 840 |
The state of New York is also looking to become one of the nation’s leading renewable energy providers. The New York State Energy Research & Development Authority (NYSERDA) is making real strides towards this objective with 11% of the nation’s new wind power projects expected to come online in 2023.
According to the data, New Hampshire is the only state in the U.S. that has no new utility-scale renewable energy installations planned for 2023. However, the state does have plans for a massive hydroelectric plant that should come online in 2024.
Decarbonizing Energy
Renewable energy is considered essential to reduce global warming and CO2 emissions.
In line with the efforts by each state to build new renewable installations, the Biden administration has set a goal of achieving a carbon pollution-free power sector by 2035 and a net zero emissions economy by no later than 2050.
The EIA forecasts the share of U.S. electricity generation from renewable sources rising from 22% in 2022 to 23% in 2023 and to 26% in 2024.
Electrification
Visualizing China’s Cobalt Supply Dominance by 2030
Chinese companies are expected to control 46% of the cobalt supply by 2030.
Visualizing China’s Cobalt Supply Dominance by 2030
Chinese dominance over critical minerals used in technologies like smartphones, electric vehicles (EVs), and solar power has become a growing concern for the U.S. and other Western countries.
Currently, China refines 68% of the world’s nickel, 40% of copper, 59% of lithium, and 73% of cobalt, and is continuing to expand its mining operations.
This graphic visualizes the total cobalt supply from the top 10 producers in 2030, highlighting China’s dominance. The data comes from Benchmark Mineral Intelligence, as of July 2024.
Cobalt production (tonnes) | Non-Chinese Owned Production | Chinese Owned Production | 2030F (Total) | 2030F (Share) |
---|---|---|---|---|
🇨🇩 DRC | 94,989 | 109,159 | 204,148 | 67.9% |
🇮🇩 Indonesia | 23,288 | 25,591 | 48,879 | 16.3% |
🇦🇺 Australia | 7,070 | 0 | 7,070 | 2.4% |
🇵🇭 Philippines | 5,270 | 0 | 5,270 | 1.8% |
🇷🇺 Russia | 4,838 | 0 | 4,838 | 1.6% |
🇨🇦 Canada | 4,510 | 0 | 4,510 | 1.5% |
🇨🇺 Cuba | 4,496 | 0 | 4,496 | 1.5% |
🇵🇬 Papua New Guinea | 541 | 3,067 | 3,608 | 1.2% |
🇹🇷 Turkey | 2,835 | 0 | 2,835 | 0.9% |
🇳🇨 New Caledonia | 2,799 | 0 | 2,799 | 0.9% |
🌍 ROW | 10,336 | 1,901 | 12,237 | 4.1% |
Total | 160,974 | 139,718 | 300,692 | 100.0% |
China’s Footprint in Africa
Cobalt is a critical mineral with a wide range of commercial, industrial, and military applications. It has gained significant attention in recent years due to its use in battery production. Today, the EV sector accounts for 40% of the global cobalt market.
The Democratic Republic of Congo (DRC) currently produces 74% of the world’s cobalt supply. Although cobalt deposits exist in regions like Australia, Europe, and Asia, the DRC holds the largest reserves by far.
China is the world’s leading consumer of cobalt, with nearly 87% of its cobalt consumption dedicated to the lithium-ion battery industry.
Although Chinese companies hold stakes in only three of the top 10 cobalt-producing countries, they control over half of the cobalt production in the DRC and Indonesia, and 85% of the output in Papua New Guinea.
Given the DRC’s large share of global cobalt production, many Chinese companies have expanded their presence in the country, acquiring projects and forming partnerships with the Congolese government.
According to Benchmark, Chinese companies are expected to control 46% of the global cobalt mined supply by 2030, a 3% increase from 2023.
By 2030, the top 10 cobalt-producing countries will account for 96% of the total mined supply, with just two countries—the DRC and Indonesia—contributing 84% of the total.
Energy Shift
Visualizing the Decline of Copper Usage in EVs
Copper content in EVs has steadily decreased over the past decade, even as overall copper demand rises due to the increasing adoption of EVs.
Visualizing the Decline of Copper Usage in EVs
Copper intensity in passenger battery electric vehicles (BEVs) has steadily decreased over the last decade, driven by numerous technological advancements alongside increasing usage of alternative materials such as aluminum.
In this graphic, we visualize the evolution of copper demand in various subcomponents of passenger battery electric vehicles (BEVs) from 2015 to 2030F, along with total global copper demand driven by EVs for the same period. This data comes exclusively from Benchmark Mineral Intelligence.
Copper Intensity Per Car
According to Benchmark Mineral Intelligence, the copper intensity per vehicle is expected to decline by almost 38 kg, from 99 kg in 2015 to 62 kg by 2030.
Year | Wiring | Motor | Copper Foil | Busbar | Auxiliary Motor | Charging Cable | Total |
---|---|---|---|---|---|---|---|
2015 | 30 | 8 | 41.26 | 13.23 | 2.87 | 3.96 | 99.32 |
2016 | 29 | 8 | 38.68 | 13.37 | 2.85 | 3.92 | 95.82 |
2017 | 28 | 7 | 32.67 | 12.72 | 2.84 | 3.90 | 87.13 |
2018 | 27 | 7 | 26.39 | 11.87 | 2.82 | 3.88 | 78.96 |
2019 | 26 | 7 | 28.00 | 10.85 | 2.78 | 3.82 | 78.45 |
2020 | 25 | 7 | 24.71 | 10.24 | 2.73 | 3.76 | 73.44 |
2021 | 24 | 6 | 25.27 | 9.29 | 2.69 | 3.70 | 70.95 |
2022 | 23 | 7 | 28.44 | 8.56 | 2.65 | 3.64 | 73.29 |
2023 | 22 | 7 | 29.87 | 8.12 | 2.61 | 3.58 | 73.18 |
2024F | 21 | 7 | 27.73 | 7.67 | 2.56 | 3.52 | 69.48 |
2025F | 20 | 7 | 27.79 | 7.19 | 2.52 | 2.51 | 67.01 |
2026F | 20 | 7 | 27.78 | 6.63 | 2.48 | 3.41 | 67.30 |
2027F | 19 | 8 | 27.55 | 6.15 | 2.44 | 3.35 | 66.49 |
2028F | 18 | 8 | 26.77 | 5.70 | 2.40 | 3.30 | 64.17 |
2029F | 18 | 8 | 26.17 | 5.51 | 2.39 | 3.28 | 63.35 |
2030F | 17 | 8 | 25.63 | 5.44 | 2.37 | 3.26 | 61.70 |
One of the most significant factors driving this decline is thrifting, where engineers and manufacturers continuously improve the efficiency and performance of various components, leading to reduced copper usage. A key example of this is in battery production, where the thickness of copper foil used in battery anodes has significantly decreased.
In 2015, Benchmark estimated copper foil usage was just over 41 kg per vehicle (at an average thickness of 10 microns), but by 2030, it is projected to fall to 26 kg as manufacturers continue to adopt thinner foils.
Similarly, automotive wiring systems have become more localized, with advances in high-voltage wiring and modular integration allowing for reduced copper content in wiring harnesses.
Copper used in wiring has dropped from 30 kg per vehicle in 2015 to a projected 17 kg by 2030.
Newer, more compact power electronics and improved thermal management in motors and charging cables have also contributed to the reduction in copper usage.
Substitution has also played a role, with alternatives such as aluminum increasingly being used in components like busbars, wiring harnesses, and charging cable applications.
Aluminum’s lighter weight and lower cost have made it a practical alternative to copper in specific applications, though the additional space required to achieve the same level of conductivity can limit its use in certain cases.
Benchmark estimates that copper used in automotive wire harnesses has declined by 30% between 2015 and 2024.
The Road Ahead
Despite reductions in per-vehicle copper usage, the outlook for copper demand from the EV sector remains strong due to the sector’s growth.
Year | EV Sector Copper Demand (tonnes) |
---|---|
2015 | 56K |
2016 | 82K |
2017 | 111K |
2018 | 166K |
2019 | 179K |
2020 | 237K |
2021 | 447K |
2022 | 696K |
2023 | 902K |
2024F | 1.0M |
2025F | 1.2M |
2026F | 1.5M |
2027F | 1.7M |
2028F | 2.0M |
2029F | 2.2M |
2030F | 2.5M |
Benchmark’s analysis indicates that by 2030, copper demand driven by EVs alone will exceed 2.5 million tonnes, securing copper’s critical role in the transition to a low-carbon future.
-
Electrification3 years ago
The Key Minerals in an EV Battery
-
Energy Shift2 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc2 years ago
How Is Aluminum Made?
-
Energy Shift3 years ago
The Solar Power Duck Curve Explained
-
Electrification3 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies