Electrification
The Massive Impact of EVs on Commodities in One Chart
The Massive Impact of EVs on Commodities
How demand would change in a 100% EV world
The Chart of the Week is a weekly Visual Capitalist feature on Fridays.
What would happen if you flipped a switch, and suddenly every new car that came off assembly lines was electric?
It’s obviously a thought experiment, since right now EVs have close to just 1% market share worldwide. We’re still years away from EVs even hitting double-digit demand on a global basis, and the entire supply chain is built around the internal combustion engine, anyways.
At the same time, however, the scenario is interesting to consider. One recent projection, for example, put EVs at a 16% penetration by 2030 and then 51% by 2040. This could be conservative depending on the changing regulatory environment for manufacturers – after all, big markets like China, France, and the U.K. have recently announced that they plan on banning gas-powered vehicles in the near future.
The Thought Experiment
We discovered this “100% EV world” thought experiment in a UBS report that everyone should read. As a part of their UBS Evidence Lab initiative, they tore down a Chevy Bolt to see exactly what is inside, and then had 39 of the bank’s analysts weigh in on the results.
After breaking down the metals and other materials used in the vehicle, they noticed a considerable amount of variance from what gets used in a standard gas-powered car. It wasn’t just the battery pack that made a difference – it was also the body and the permanent-magnet synchronous motor that had big implications.
As a part of their analysis, they extrapolated the data for a potential scenario where 100% of the world’s auto demand came from Chevy Bolts, instead of the current auto mix.
The Implications
If global demand suddenly flipped in this fashion, here’s what would happen:
Material | Demand increase | Notes |
---|---|---|
Lithium | 2,898% | Needed in all lithium-ion batteries |
Cobalt | 1,928% | Used in the Bolt's NMC cathode |
Rare Earths | 655% | Bolt uses neodymium in permanent magnet motor |
Graphite | 524% | Used in the anode of lithium-ion batteries |
Nickel | 105% | Used in the Bolt's NMC cathode |
Copper | 22% | Used in permanent magnet motor and wiring |
Manganese | 14% | Used in the Bolt's NMC cathode |
Aluminum | 13% | Used to reduce weight of vehicle |
Silicon | 0% | Bolt uses 6-10x more semiconductors |
Steel | -1% | Uses 7% less steel, but fairly minimal impact on market |
PGMs | -53% | Catalytic converters not needed in EVs |
Some caveats we think are worth noting:
The Bolt is not a Tesla
The Bolt uses an NMC cathode formulation (nickel, manganese, and cobalt in a 1:1:1 ratio), versus Tesla vehicles which use NCA cathodes (nickel, cobalt, and aluminum, in an estimated 16:3:1 ratio). Further, the Bolt uses an permanent-magnet synchronous motor, which is different from Tesla’s AC induction motor – the key difference there being rare earth usage.
Big Markets, small markets:
Lithium, cobalt, and graphite have tiny markets, and they will explode in size with any notable increase in EV demand. The nickel market, which is more than $20 billion per year, will also more than double in this scenario. It’s also worth noting that the Bolt uses low amounts of nickel in comparison to Tesla cathodes, which are 80% nickel.
Meanwhile, the 100% EV scenario barely impacts the steel market, which is monstrous to begin with. The same can be said for silicon, even though the Bolt uses 6-10x more semiconductors than a regular car. The market for PGMs like platinum and palladium, however, gets decimated in this hypothetical scenario – that’s because their use as catalysts in combustion engines are a primary source of demand.
Electrification
Visualizing the Supply Deficit of Battery Minerals (2024-2034P)
A surplus of key metals is expected to shift to a major deficit within a decade.

Visualizing the Supply Deficit of Battery Minerals (2024-2034P)
The world currently produces a surplus of key battery minerals, but this is projected to shift to a significant deficit over the next 10 years.
This graphic illustrates this change, driven primarily by growing battery demand. The data comes exclusively from Benchmark Mineral Intelligence, as of November 2024.
Minerals in a Lithium-Ion Battery Cathode
Minerals make up the bulk of materials used to produce parts within the cell, ensuring the flow of electrical current:
- Lithium: Acts as the primary charge carrier, enabling energy storage and transfer within the battery.
- Cobalt: Stabilizes the cathode structure, improving battery lifespan and performance.
- Nickel: Boosts energy density, allowing batteries to store more energy.
- Manganese: Enhances thermal stability and safety, reducing overheating risks.
The cells in an average battery with a 60 kilowatt-hour (kWh) capacity—the same size used in a Chevy Bolt—contain roughly 185 kilograms of minerals.
Battery Demand Forecast
Due to the growing demand for these materials, their production and mining have increased exponentially in recent years, led by China. In this scenario, all the metals shown in the graphic currently experience a surplus.
In the long term, however, with the greater adoption of batteries and other renewable energy technologies, projections indicate that all these minerals will enter a deficit.
For example, lithium demand is expected to more than triple by 2034, resulting in a projected deficit of 572,000 tonnes of lithium carbonate equivalent (LCE). According to Benchmark analysis, the lithium industry would need over $40 billion in investment to meet demand by 2030.
Metric | Lithium (in tonnes LCE) | Nickel (in tonnes) | Cobalt (in tonnes) | Manganese (in tonnes) |
---|---|---|---|---|
2024 Demand | 1,103,000 | 3,440,000 | 230,000 | 119,000 |
2024 Surplus | 88,000 | 117,000 | 24,000 | 11,000 |
2034 Demand | 3,758,000 | 6,082,000 | 468,000 | 650,000 |
2034 Deficit | -572,000 | -839,000 | -91,000 | -307,000 |
Nickel demand, on the other hand, is expected to almost double, leading to a deficit of 839,000 tonnes by 2034. The surge in demand is attributed primarily to the rise of mid- and high-performance electric vehicles (EVs) in Western markets.
Electrification
Visualizing the EU’s Critical Minerals Gap by 2030
This graphic underscores the scale of the challenge the bloc faces in strengthening its critical mineral supply by 2030.

Visualizing EU’s Critical Minerals Gap by 2030
The European Union’s Critical Raw Material Act sets out several ambitious goals to enhance the resilience of its critical mineral supply chains.
The Act includes non-binding targets for the EU to build sufficient mining capacity so that mines within the bloc can meet 10% of its critical mineral demand.
Additionally, the Act establishes a goal for 40% of demand to be met by processing within the bloc, and 25% through recycling.
Several months after the Act’s passage in May 2024, this graphic highlights the scale of the challenge the EU aims to overcome. This data comes exclusively from Benchmark Mineral Intelligence, as of July 2024. The graphic excludes synthetic graphite.
Securing Europe’s Supply of Critical Materials
With the exception of nickel mining, none of the battery minerals deemed strategic by the EU are on track to meet these goals.
Graphite, the largest mineral component used in batteries, is of particular concern. There is no EU-mined supply of manganese ore or coke, the precursor to synthetic graphite.
By 2030, the European Union is expected to supply 16,000 tonnes of flake graphite locally, compared to the 45,000 tonnes it would need to meet the 10% mining target.
Metal | 2030 Demand (tonnes) | Mining (F) | Processing (F) | Recycling (F) | Mining Target | Processing Target | Recycling Target |
---|---|---|---|---|---|---|---|
Lithium | 459K | 29K | 46K | 25K | 46K | 184K | 115K |
Nickel | 403K | 42K | 123K | 25K | 40K | 161K | 101K |
Cobalt | 94K | 1K | 19K | 6K | 9K | 37K | 23K |
Manganese | 147K | 0K | 21K | 5K | 15K | 59K | 37K |
Flake Graphite | 453K | 16K | 17K | N/A | 45K | 86K | N/A |
The EU is also expected to mine 29,000 tonnes of LCE (lithium carbonate equivalent) compared to the 46,000 tonnes needed to meet the 10% target.
In terms of mineral processing, the bloc is expected to process 25% of its lithium requirements, 76% of nickel, 51% of cobalt, 36% of manganese, and 20% of flake graphite.
The EU is expected to recycle only 22% of its lithium needs, 25% of nickel, 26% of cobalt, and 14% of manganese. Graphite, meanwhile, is not widely recycled on a commercial scale.
-
Energy Shift3 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc2 years ago
How Is Aluminum Made?
-
Electrification3 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies
-
Real Assets1 year ago
200 Years of Global Gold Production, by Country
-
Electrification3 years ago
Visualized: Battery Vs. Hydrogen Fuel Cell