Connect with us

Electrification

The Massive Impact of EVs on Commodities in One Chart

Published

on

The Massive Impact of EVs on Commodities in One Chart

The Massive Impact of EVs on Commodities

How demand would change in a 100% EV world

The Chart of the Week is a weekly Visual Capitalist feature on Fridays.

What would happen if you flipped a switch, and suddenly every new car that came off assembly lines was electric?

It’s obviously a thought experiment, since right now EVs have close to just 1% market share worldwide. We’re still years away from EVs even hitting double-digit demand on a global basis, and the entire supply chain is built around the internal combustion engine, anyways.

At the same time, however, the scenario is interesting to consider. One recent projection, for example, put EVs at a 16% penetration by 2030 and then 51% by 2040. This could be conservative depending on the changing regulatory environment for manufacturers – after all, big markets like China, France, and the U.K. have recently announced that they plan on banning gas-powered vehicles in the near future.

The Thought Experiment

We discovered this “100% EV world” thought experiment in a UBS report that everyone should read. As a part of their UBS Evidence Lab initiative, they tore down a Chevy Bolt to see exactly what is inside, and then had 39 of the bank’s analysts weigh in on the results.

After breaking down the metals and other materials used in the vehicle, they noticed a considerable amount of variance from what gets used in a standard gas-powered car. It wasn’t just the battery pack that made a difference – it was also the body and the permanent-magnet synchronous motor that had big implications.

As a part of their analysis, they extrapolated the data for a potential scenario where 100% of the world’s auto demand came from Chevy Bolts, instead of the current auto mix.

The Implications

If global demand suddenly flipped in this fashion, here’s what would happen:

MaterialDemand increaseNotes
Lithium2,898%Needed in all lithium-ion batteries
Cobalt1,928%Used in the Bolt's NMC cathode
Rare Earths655%Bolt uses neodymium in permanent magnet motor
Graphite524%Used in the anode of lithium-ion batteries
Nickel105%Used in the Bolt's NMC cathode
Copper22%Used in permanent magnet motor and wiring
Manganese14%Used in the Bolt's NMC cathode
Aluminum13%Used to reduce weight of vehicle
Silicon0%Bolt uses 6-10x more semiconductors
Steel-1%Uses 7% less steel, but fairly minimal impact on market
PGMs-53%Catalytic converters not needed in EVs

Some caveats we think are worth noting:

The Bolt is not a Tesla
The Bolt uses an NMC cathode formulation (nickel, manganese, and cobalt in a 1:1:1 ratio), versus Tesla vehicles which use NCA cathodes (nickel, cobalt, and aluminum, in an estimated 16:3:1 ratio). Further, the Bolt uses an permanent-magnet synchronous motor, which is different from Tesla’s AC induction motor – the key difference there being rare earth usage.

Big Markets, small markets:
Lithium, cobalt, and graphite have tiny markets, and they will explode in size with any notable increase in EV demand. The nickel market, which is more than $20 billion per year, will also more than double in this scenario. It’s also worth noting that the Bolt uses low amounts of nickel in comparison to Tesla cathodes, which are 80% nickel.

Meanwhile, the 100% EV scenario barely impacts the steel market, which is monstrous to begin with. The same can be said for silicon, even though the Bolt uses 6-10x more semiconductors than a regular car. The market for PGMs like platinum and palladium, however, gets decimated in this hypothetical scenario – that’s because their use as catalysts in combustion engines are a primary source of demand.

Subscribe to Visual Capitalist
Click for Comments

Electrification

Visualizing the World’s Largest Copper Producers

Many new technologies critical to the energy transition rely on copper. Here are the world’s largest copper producers.

Published

on

Visualizing the World’s Largest Copper Producers

Man has relied on copper since prehistoric times. It is a major industrial metal with many applications due to its high ductility, malleability, and electrical conductivity.

Many new technologies critical to fighting climate change, like solar panels and wind turbines, rely on the red metal.

But where does the copper we use come from? Using the U.S. Geological Survey’s data, the above infographic lists the world’s largest copper producing countries in 2021.

The Countries Producing the World’s Copper

Many everyday products depend on minerals, including mobile phones, laptops, homes, and automobiles. Incredibly, every American requires 12 pounds of copper each year to maintain their standard of living.

North, South, and Central America dominate copper production, as these regions collectively host 15 of the 20 largest copper mines.

Chile is the top copper producer in the world, with 27% of global copper production. In addition, the country is home to the two largest mines in the world, Escondida and Collahuasi.

Chile is followed by another South American country, Peru, responsible for 10% of global production.

RankCountry2021E Copper Production (Million tonnes)Share
#1🇨🇱 Chile5.627%
#2🇵🇪 Peru2.210%
#3🇨🇳 China1.88%
#4🇨🇩 DRC 1.88%
#5🇺🇸 United States1.26%
#6🇦🇺 Australia0.94%
#7🇷🇺 Russia0.84%
#8🇿🇲 Zambia0.84%
#9🇮🇩 Indonesia0.84%
#10🇲🇽 Mexico0.73%
#11🇨🇦 Canada0.63%
#12🇰🇿 Kazakhstan0.52%
#13🇵🇱 Poland0.42%
🌍 Other countries2.813%
🌐 World total21.0100%

The Democratic Republic of Congo (DRC) and China share third place, with 8% of global production each. Along with being a top producer, China also consumes 54% of the world’s refined copper.

Copper’s Role in the Green Economy

Technologies critical to the energy transition, such as EVs, batteries, solar panels, and wind turbines require much more copper than conventional fossil fuel based counterparts.

For example, copper usage in EVs is up to four times more than in conventional cars. According to the Copper Alliance, renewable energy systems can require up to 12x more copper compared to traditional energy systems.

Technology2020 Installed Capacity (megawatts)Copper Content (2020, tonnes)2050p Installed Capacity (megawatts)Copper Content (2050p, tonnes)
Solar PV126,735 MW633,675372,000 MW1,860,000
Onshore Wind105,015 MW451,565202,000 MW868,600
Offshore Wind6,013 MW57,72545,000 MW432,000

With these technologies’ rapid and large-scale deployment, copper demand from the energy transition is expected to increase by nearly 600% by 2030.

As the transition to renewable energy and electrification speeds up, so will the pressure for more copper mines to come online.

Continue Reading

Electrification

Visualizing the World’s Largest Hydroelectric Dams

Hydroelectric dams generate 40% of the world’s renewable energy, the largest of any type. View this infographic to learn more.

Published

on

Visualizing the World’s Largest Hydroelectric Dams

Did you know that hydroelectricity is the world’s biggest source of renewable energy? According to recent figures from the International Renewable Energy Agency (IRENA), it represents 40% of total capacity, ahead of solar (28%) and wind (27%).

This type of energy is generated by hydroelectric power stations, which are essentially large dams that use the water flow to spin a turbine. They can also serve secondary functions such as flow monitoring and flood control.

To help you learn more about hydropower, we’ve visualized the five largest hydroelectric dams in the world, ranked by their maximum output.

Overview of the Data

The following table lists key information about the five dams shown in this graphic, as of 2021. Installed capacity is the maximum amount of power that a plant can generate under full load.

CountryDamRiverInstalled Capacity
(gigawatts)
Dimensions
(meters)
🇨🇳 ChinaThree Gorges DamYangtze River22.5181 x 2,335
🇧🇷 Brazil / 🇵🇾 ParaguayItaipu DamParana River14.0196 x 7,919
🇨🇳 ChinaXiluodu DamJinsha River13.9286 x 700
🇧🇷 BrazilBelo Monte DamXingu River11.290 X 3,545
🇻🇪 VenezuelaGuri DamCaroni River10.2162 x 7,426

At the top of the list is China’s Three Gorges Dam, which opened in 2003. It has an installed capacity of 22.5 gigawatts (GW), which is close to double the second-place Itaipu Dam.

In terms of annual output, the Itaipu Dam actually produces about the same amount of electricity. This is because the Parana River has a low seasonal variance, meaning the flow rate changes very little throughout the year. On the other hand, the Yangtze River has a significant drop in flow for several months of the year.

For a point of comparison, here is the installed capacity of the world’s three largest solar power plants, also as of 2021:

  • Bhadla Solar Park, India: 2.2 GW
  • Hainan Solar Park, China: 2.2 GW
  • Pavagada Solar Park, India: 2.1 GW

Compared to our largest dams, solar plants have a much lower installed capacity. However, in terms of cost (cents per kilowatt-hour), the two are actually quite even.

Closer Look: Three Gorges Dam

The Three Gorges Dam is an engineering marvel, costing over $32 billion to construct. To wrap your head around its massive scale, consider the following facts:

  • The Three Gorges Reservoir (which feeds the dam) contains 39 trillion kg of water (42 billion tons)
  • In terms of area, the reservoir spans 400 square miles (1,045 square km)
  • The mass of this reservoir is large enough to slow the Earth’s rotation by 0.06 microseconds

Of course, any man-made structure this large is bound to have a profound impact on the environment. In a 2010 study, it was found that the dam has triggered over 3,000 earthquakes and landslides since 2003.

The Consequences of Hydroelectric Dams

While hydropower can be cost-effective, there are some legitimate concerns about its long-term sustainability.

For starters, hydroelectric dams require large upstream reservoirs to ensure a consistent supply of water. Flooding new areas of land can disrupt wildlife, degrade water quality, and even cause natural disasters like earthquakes.

Dams can also disrupt the natural flow of rivers. Other studies have found that millions of people living downstream from large dams suffer from food insecurity and flooding.

Whereas the benefits have generally been delivered to urban centers or industrial-scale agricultural developments, river-dependent populations located downstream of dams have experienced a difficult upheaval of their livelihoods.
– Richter, B.D. et al. (2010)

Perhaps the greatest risk to hydropower is climate change itself. For example, due to the rising frequency of droughts, hydroelectric dams in places like California are becoming significantly less economical.

Continue Reading

Subscribe

Popular