Connect with us

Misc

Mapped: U.S. Mineral Production, by State

Published

on

mineral production

Mapped: U.S. Non-fuel Mineral Production, by State

Just how many minerals does the U.S. consume? In 2020, non-fuel mineral consumption worked out to around 19,000 pounds or 8.6 tonnes per person.

This includes metals like copper, iron ore, and zinc, along with construction sand, stone, cement, and other industrial minerals. With such high demand, changes in the production of these commodities often reflect how the overall economy is performing.

The above infographic maps U.S. non-fuel mineral production by state in 2021 using data from the United States Geological Survey (USGS).

The Most Valuable Minerals

As the U.S. economy restarted in 2021, American mines generated over $90 billion in non-fuel mineral production, a 12% increase from 2020.

Before diving into the breakdown by state, here’s a look at production value by mineral type:

CategoryProduction value% of Total
Metals$33.8B37.4%
Construction aggregates$29.2B32.3%
Industrial minerals (excl. construction)$27.4B30.3%
Total$90.4B100%

Each of the categories accounted for roughly one-third of the total production value, with metals making up the largest share. Within metals, copper and gold collectively accounted for 66% of the total, followed by iron ore (13%) and zinc (7%).

The production of sand, gravel, and crushed stone—important inputs for construction—also made up a significant chunk of the value, along with other industrial minerals. Furthermore, crushed stone was the leading non-fuel mineral in 2021, with $19.3 billion in production value.

Which States Lead in Mineral Production?

Arizona, Nevada, Texas, California, and Minnesota—the top five states—accounted for nearly 40% of non-fuel mineral production value.

StateValue of Non-fuel Mineral Production% of Total
Arizona$10B11.0%
Nevada$9.4B10.3%
Texas$5.8B6.4%
California$5.3B5.8%
Minnesota$4.0B4.4%
Alaska$3.9B4.3%
Utah$3.8B4.1%
Missouri$3.3B3.7%
Michigan$3.0B3.3%
Wyoming$2.8B3.0%
Florida$2.4B2.7%
Georgia$2.0B2.3%
Montana$2.0B2.2%
Pennsylvania$2.0B2.2%
Alabama$1.9B2.1%
Colorado$1.6B1.8%
New York$1.6B1.7%
Tennessee$1.6B1.7%
Virginia$1.6B1.7%
North Caroline$1.5B1.6%
Ohio$1.4B1.5%
New Mexico$1.3B1.4%
Kansas$1.2B1.3%
Indiana$1.2B1.3%
Arkansas$1.0B1.1%
Wisconsin$1.0B1.1%
Illinois$1.0B1.1%
Iowa$0.96B1.1%
South Carolina$0.95B1.1%
Oklahoma$0.92B1.0%
Washington$0.73B0.8%
Idaho$0.72B0.8%
Louisiana$0.66B0.7%
Oregon$0.60B0.7%
Kentucky$0.59B0.6%
South Dakota$0.50B0.5%
Maryland$0.46B0.5%
New Jersey$0.40B0.4%
West Virginia$0.36B0.4%
Nebraska$0.22B0.2%
Massachusetts$0.21B0.2%
Mississippi$0.20B0.2%
Connecticut$0.18B0.2%
Hawaii$0.13B0.1%
Maine$0.13B0.1%
Vermont$0.11B0.1%
New Hampshire$0.095B0.1%
Rhode Island$0.066B0.07%
North Dakota$0.065B0.07%
Delaware$0.022B0.02%
Undistributed4.0B4.5%
Total$90.4B100.0%

Arizona and Nevada, the top two states, are the country’s biggest producers of copper and gold, respectively. Arizona also produced over $1 billion worth of construction sand and gravel in 2021, in addition to being the country’s leading producer of gemstones.

In third place was Texas, where mines produced nearly $6 billion worth of non-fuel minerals, of which 38% came from crushed stone. California, meanwhile, led in the production of construction sand and gravel, and was the country’s sole source of rare earth elements.

Minnesota also made the top five as the nation’s largest producer of iron ore. In fact, mines in Minnesota and Michigan shipped 98% of domestic usable iron ore products in 2021.

The Missing Critical Minerals

Although the U.S. is a major producer of non-fuel minerals, it still relies on imports for the supply of several minerals.

In 2021, the U.S. imported $5.3 billion worth of raw materials, in addition to $90 billion in net imports of processed mineral materials. Of the 50 minerals deemed critical to national security, the country was 100% net import reliant for 26, including graphite, manganese, and several rare earth metals.

To meet the rising demand for these minerals, U.S. President Biden announced major investments in domestic critical mineral production, including a $35 million grant to MP Materials for the processing of rare earths.

It remains to be seen whether these investments will pay off in building more resilient, end-to-end domestic critical mineral supply chains.

Click for Comments

Misc

Mapped: Countries With the Highest Flood Risk

Recent floods in Pakistan have affected more than 33 million people. Where is the risk of flooding highest around the world?

Published

on

PopulationFloodRisk_MainGraphicOption2_1200px

Risk of Flooding Mapped Around the World

Devastating floods across Pakistan this summer have resulted in more than 1,400 lives lost and one-third of the country being under water.

This raises the question: which nations and their populations are the most vulnerable to the risk of flooding around the world?

Using data from a recent study published in Nature, this graphic maps flood risk around the world, highlighting the 1.81 billion people directly exposed to 1-in-100 year floods. The methodology takes into account potential risks from both inland and coastal flooding.

Asian Countries Most at Risk from Rising Water Levels

Not surprisingly, countries with considerable coastlines, river systems, and flatlands find themselves with high percentages of their population at risk.

The Netherlands and Bangladesh are the only two nations in the world to have more than half of their population at risk due to flooding, at 59% and 58%, respectively. Vietnam (46%), Egypt (41%), and Myanmar (40%) round out the rest of the top five nations.

Besides the Netherlands, only two other European nations are in the top 20 nations by percentage of population at risk, Austria (18th at 29%) and Albania (20th at 28%).

RankCountryFlood risk, by population exposed (%)Total population exposed
#1🇳🇱 Netherlands58.7%10,100,000
#2🇧🇩 Bangladesh57.5%94,424,000
#3🇻🇳 Vietnam46.0%45,504,000
#4🇪🇬 Egypt40.5%38,871,000
#5🇲🇲 Myanmar39.9%19,104,000
#6🇱🇦 Laos39.7%2,985,000
#7🇰🇭 Cambodia38.1%7,431,000
#8🇬🇾 Guyana37.9%276,000
#9🇸🇷 Suriname37.7%233,000
#10🇮🇶 Iraq36.8%16,350,000
#11🇹🇭 Thailand33.9%25,431,000
#12🇸🇸 South Sudan32.5%5,437,000
#13🇵🇰 Pakistan31.1%71,786,000
#14🇳🇵 Nepal29.4%11,993,000
#15🇨🇬 Republic of the Congo29.3%1,170,000
#16🇵🇭 Philippines29.0%30,483,000
#17🇯🇵 Japan28.7%36,060,000
#18🇦🇹 Austria27.8%2,437,000
#19🇮🇳 India27.7%389,816,000
#20🇦🇱 Albania27.6%771,000
#21🇨🇳 China27.5%394,826,000
#22🇹🇩 Chad27.4%4,547,000
#23🇮🇩 Indonesia27.0%75,696,000
#24🇭🇷 Croatia26.9%1,094,000
#25🇸🇰 Slovakia26.7%1,401,000

The Southeast Asia region alone makes up more than two-thirds of the global population exposed to flooding risk at 1.24 billion people.

China and India account for 395 million and 390 million people, respectively, with both nations at the top in terms of the absolute number of people at risk of rising water levels. The rest of the top five countries by total population at risk are Bangladesh (94 million people at risk), Indonesia (76 million people at risk), and Pakistan (72 million people at risk).

How Flooding is Already Affecting Countries Like Pakistan

While forecasted climate and natural disasters can often take years to manifest, flooding affected more than 100 million people in 2021. Recent summer floods in Pakistan have continued the trend in 2022.

With 31% of its population (72 million people) at risk of flooding, Pakistan is particularly vulnerable to floods.

In 2010, floods in Pakistan were estimated to have affected more than 18 million people. The recent floods, which started in June, are estimated to have affected more than 33 million people as more than one-third of the country is submerged underwater.

The Cost of Floods Today and in the Future

Although the rising human toll is by far the biggest concern that floods present, they also bring with them massive economic costs. Last year, droughts, floods, and storms caused economic losses totaling $224.2 billion worldwide, nearly doubling the 2001-2020 annual average of $117.8 billion.

A recent report forecasted that water risk (caused by droughts, floods, and storms) could eat up $5.6 trillion of global GDP by 2050, with floods projected to account for 36% of these direct losses.

As both human and economic losses caused by floods continue to mount, nations around the world will need to focus on preventative infrastructure and restorative solutions for ecosystems and communities already affected and most at risk of flooding.

Continue Reading

Misc

How Is Aluminum Made?

Aluminum is one of the world’s most widely used metals, but producing it is a complex process. Here’s a look at where it comes from.

Published

on

how is aluminum made?

How is Aluminum Made?

Aluminum is one of our most widely-used metals, found in everything from beer cans to airplane parts.

However, the lightweight metal doesn’t occur naturally, and producing it is a complex process.

The above infographics use data from the USGS, Aluminium Leader, and other sources to break down the three stages of aluminum production.

The Three Stages of Aluminum Production

Each year, the world produces around 390 million tonnes of bauxite rock, and 85% of it is used to make aluminum.

Bauxites are rocks composed of aluminum oxides along with other minerals and are the world’s primary source of aluminum. After mining, bauxite is refined into alumina, which is then converted into aluminum.

Therefore, aluminum typically goes from ore to metal in three stages.

Stage 1: Mining Bauxite

Bauxite is typically extracted from the ground in open-pit mines, with just three countries—Australia, China, and Guinea—accounting for 72% of global mine production.

Country2021 Mine Production of Bauxite (tonnes)% of Total
Australia 🇦🇺110,000,00028.2%
China 🇨🇳86,000,00022.1%
Guinea 🇬🇳85,000,00021.8%
Brazil 🇧🇷32,000,0008.2%
India 🇮🇳22,000,0005.6%
Indonesia 🇮🇩18,000,0004.6%
Russia 🇷🇺6,200,0001.6%
Jamaica 🇯🇲5,800,0001.5%
Kazakhstan 🇰🇿5,200,0001.3%
Saudi Arabia 🇸🇦4,300,0001.1%
Rest of the World 🌍15,500,0004.0%
Total390,000,000100.0%

Australia is by far the largest bauxite producer, and it’s also home to the Weipa Mine, the biggest bauxite mining operation globally.

Guinea, the third-largest producer, is endowed with more than seven billion tonnes of bauxite reserves, more than any other country. Additionally, Guinea is the top exporter of bauxite globally, with 76% of its bauxite exports going to China.

After bauxite is out of the ground, it is sent to refineries across the globe to make alumina, marking the second stage of the production process.

Stage 2: Alumina Production

In the 1890s, Austrian chemist Carl Josef Bayer invented a revolutionary process for extracting alumina from bauxite. Today—over 100 years later—some 90% of alumina refineries still use the Bayer process to refine bauxite.

Here are the four key steps in the Bayer process:

  1. Digestion:
    Bauxite is mixed with sodium hydroxide and heated under pressure. At this stage, the sodium hydroxide selectively dissolves aluminum oxide from the bauxite, leaving behind other minerals as impurities.
  2. Filtration:
    Impurities are separated and filtered from the solution, forming a residue known as red mud. After discarding the mud, aluminum oxide is converted into sodium aluminate.
  3. Precipitation:
    The sodium aluminate solution is cooled and precipitated into a solid, crystallized form of aluminum hydroxide.
  4. Calcination:
    The aluminum hydroxide crystals are washed and heated in calciners to form pure aluminum oxide—a sandy white material known as alumina.

The impurities or red mud left behind in the alumina production process is a major environmental concern. In fact, for every tonne of alumina, refineries produce 1.2 tonnes of red mud, and there are over three billion tonnes of it stored in the world today.

China, the second-largest producer and largest importer of bauxite, supplies more than half of the world’s alumina.

Country2021 alumina production (tonnes)% of total
China 🇨🇳74,000,00053%
Australia 🇦🇺21,000,00015%
Brazil 🇧🇷11,000,0008%
India 🇮🇳6,800,0005%
Russia 🇷🇺3,100,0002%
Germany 🇩🇪1,900,0001%
Ireland 🇮🇪1,900,0001%
Saudi Arabia 🇸🇦1,800,0001%
Ukraine 🇺🇦1,700,0001%
Spain 🇪🇸1,600,0001%
Rest of the World 🌍15,100,00011%
Total139,900,000100%

Several major producers of bauxite, including Australia, Brazil, and India, are among the largest alumina producers, although none come close to China.

Alumina has applications in multiple industries, including plastics, cosmetics, and chemical production. But of course, the majority of it is shipped to smelters to make aluminum.

Stage 3: Aluminum Production

Alumina is converted into aluminum through electrolytic reduction. Besides alumina itself, another mineral called cryolite is key to the process, along with loads of electricity. Here’s a simplified overview of how aluminum smelting works:

  1. In aluminum smelter facilities, hundreds of electrolytic reduction cells are filled up with molten cryolite.
  2. Alumina (composed of two aluminum atoms and three oxygen atoms) is then dumped into these cells, and a strong electric current breaks the chemical bond between aluminum and oxygen atoms.
  3. The electrolysis results in pure liquid aluminum settling at the bottom of the cell, which is then purified and cast into its various shapes and sizes.

China dominates global aluminum production and is also the largest consumer. Its neighbor India is the second-largest producer, making only a tenth of China’s output.

Country2021 Aluminum Smelter Production (tonnes)% of total
China 🇨🇳39,000,00059%
India 🇮🇳3,900,0006%
Russia 🇷🇺3,700,0006%
Canada 🇨🇦3,100,0005%
United Arab Emirates 🇦🇪2,600,0004%
Australia 🇦🇺1,600,0002%
Bahrain 🇧🇭1,500,0002%
Iceland 🇮🇸880,0001%
U.S. 🇺🇸880,0001%
Rest of the World 🌍9,400,00014%
Total66,560,000100%

As is the case for alumina production, some of the countries that produce bauxite and alumina also produce aluminum, such as India, Australia, and Russia.

Roughly a quarter of annually produced aluminum is used by the construction industry. Another 23% goes into vehicle frames, wires, wheels, and other parts of the transportation industry. Aluminum foil, cans, and packaging also make up another major end-use with a 17% consumption share.

Aluminum’s widespread applications have made it one of the most valuable metal markets. In 2021, the global aluminum market was valued at around $245.7 billion, and as consumption grows, it’s projected to nearly double in size to $498.5 billion by 2030.

Continue Reading

Subscribe

Latest News

The latest news from our sponsors:

Popular