Connect with us

Electrification

Mapped: Solar Power by Country in 2021

Published

on

Solar Power by Country

Mapped: Solar Power by Country in 2021

The world is adopting renewable energy at an unprecedented pace, and solar power is leading the way.

Despite a 4.5% fall in global energy demand in 2020, renewable energy technologies showed promising progress. While the growth in renewables was strong across the board, solar power led from the front with 127 gigawatts installed in 2020, its largest-ever annual capacity expansion.

The above infographic uses data from the International Renewable Energy Agency (IRENA) to map solar power capacity by country in 2021. This includes both solar photovoltaic (PV) and concentrated solar power capacity.

The Solar Power Leaderboard

From the Americas to Oceania, countries in virtually every continent (except Antarctica) added more solar to their mix last year. Here’s a snapshot of solar power capacity by country at the beginning of 2021:

CountryInstalled capacity, megawattsWatts* per capita% of world total
China 🇨🇳 254,35514735.6%
U.S. 🇺🇸 75,57223110.6%
Japan 🇯🇵 67,0004989.4%
Germany 🇩🇪 53,7835937.5%
India 🇮🇳 39,211325.5%
Italy 🇮🇹 21,6003453.0%
Australia 🇦🇺 17,6276372.5%
Vietnam 🇻🇳 16,504602.3%
South Korea 🇰🇷 14,5752172.0%
Spain 🇪🇸 14,0891862.0%
United Kingdom 🇬🇧 13,5632001.9%
France 🇫🇷 11,7331481.6%
Netherlands 🇳🇱 10,2133961.4%
Brazil 🇧🇷 7,881221.1%
Turkey 🇹🇷 6,668730.9%
South Africa 🇿🇦 5,990440.8%
Taiwan 🇹🇼 5,8171720.8%
Belgium 🇧🇪 5,6463940.8%
Mexico 🇲🇽 5,644350.8%
Ukraine 🇺🇦 5,3601140.8%
Poland 🇵🇱 3,936340.6%
Canada 🇨🇦 3,325880.5%
Greece 🇬🇷 3,2472580.5%
Chile 🇨🇱 3,2051420.4%
Switzerland 🇨🇭 3,1182950.4%
Thailand 🇹🇭 2,988430.4%
United Arab Emirates 🇦🇪 2,5391850.4%
Austria 🇦🇹 2,2201780.3%
Czech Republic 🇨🇿 2,0731940.3%
Hungary 🇭🇺 1,9531310.3%
Egypt 🇪🇬 1,694170.2%
Malaysia 🇲🇾 1,493280.2%
Israel 🇮🇱 1,4391340.2%
Russia 🇷🇺 1,42870.2%
Sweden 🇸🇪 1,417630.2%
Romania 🇷🇴 1,387710.2%
Jordan 🇯🇴 1,3591000.2%
Denmark 🇩🇰 1,3001860.2%
Bulgaria 🇧🇬 1,0731520.2%
Philippines 🇵🇭 1,04890.1%
Portugal 🇵🇹 1,025810.1%
Argentina 🇦🇷 764170.1%
Pakistan 🇵🇰 73760.1%
Morocco 🇲🇦 73460.1%
Slovakia 🇸🇰 593870.1%
Honduras 🇭🇳 514530.1%
Algeria 🇩🇿 448100.1%
El Salvador 🇸🇻 429660.1%
Iran 🇮🇷 41450.1%
Saudi Arabia 🇸🇦 409120.1%
Finland 🇫🇮 391390.1%
Dominican Republic 🇩🇴 370340.1%
Peru 🇵🇪 331100.05%
Singapore 🇸🇬 329450.05%
Bangladesh 🇧🇩 30120.04%
Slovenia 🇸🇮 2671280.04%
Uruguay 🇺🇾 256740.04%
Yemen 🇾🇪 25380.04%
Iraq 🇮🇶 21650.03%
Cambodia 🇰🇭 208120.03%
Cyprus 🇨🇾 2001470.03%
Panama 🇵🇦 198460.03%
Luxembourg 🇱🇺 1952440.03%
Malta 🇲🇹 1843120.03%
Indonesia 🇮🇩 17210.02%
Cuba 🇨🇺 163140.02%
Belarus 🇧🇾 159170.02%
Senegal 🇸🇳 15580.02%
Norway 🇳🇴 152170.02%
Lithuania 🇱🇹 148370.02%
Namibia 🇳🇦 145550.02%
New Zealand 🇳🇿 142290.02%
Estonia 🇪🇪 130980.02%
Bolivia 🇧🇴 120100.02%
Oman 🇴🇲 109210.02%
Colombia 🇨🇴 10720.01%
Kenya 🇰🇪 10620.01%
Guatemala 🇬🇹10160.01%
Croatia 🇭🇷 85170.01%
World total 🌎 713,97083100.0%

*1 megawatt = 1,000,000 watts.

China is the undisputed leader in solar installations, with over 35% of global capacity. What’s more, the country is showing no signs of slowing down. It has the world’s largest wind and solar project in the pipeline, which could add another 400,000MW to its clean energy capacity.

Following China from afar is the U.S., which recently surpassed 100,000MW of solar power capacity after installing another 50,000MW in the first three months of 2021. Annual solar growth in the U.S. has averaged an impressive 42% over the last decade. Policies like the solar investment tax credit, which offers a 26% tax credit on residential and commercial solar systems, have helped propel the industry forward.

Although Australia hosts a fraction of China’s solar capacity, it tops the per capita rankings due to its relatively low population of 26 million people. The Australian continent receives the highest amount of solar radiation of any continent, and over 30% of Australian households now have rooftop solar PV systems.

China: The Solar Champion

In 2020, President Xi Jinping stated that China aims to be carbon neutral by 2060, and the country is taking steps to get there.

China is a leader in the solar industry, and it seems to have cracked the code for the entire solar supply chain. In 2019, Chinese firms produced 66% of the world’s polysilicon, the initial building block of silicon-based photovoltaic (PV) panels. Furthermore, more than three-quarters of solar cells came from China, along with 72% of the world’s PV panels.

With that said, it’s no surprise that 5 of the world’s 10 largest solar parks are in China, and it will likely continue to build more as it transitions to carbon neutrality.

What’s Driving the Rush for Solar Power?

The energy transition is a major factor in the rise of renewables, but solar’s growth is partly due to how cheap it has become over time. Solar energy costs have fallen exponentially over the last decade, and it’s now the cheapest source of new energy generation.

Since 2010, the cost of solar power has seen a 85% decrease, down from $0.28 to $0.04 per kWh. According to MIT researchers, economies of scale have been the single-largest factor in continuing the cost decline for the last decade. In other words, as the world installed and made more solar panels, production became cheaper and more efficient.

This year, solar costs are rising due to supply chain issues, but the rise is likely to be temporary as bottlenecks resolve.

Click for Comments

Electrification

Charted: Battery Capacity by Country (2024-2030)

This graphic compares battery capacity by cathode type across major countries.

Published

on

This graphic, using exclusive data from Benchmark Mineral Intelligence, compares battery capacity by cathode type across major countries.

Charted: Battery Capacity by Country (2024-2030)

As the global energy transition accelerates, battery demand continues to soar—along with competition between battery chemistries.

According to the International Energy Agency, in 2024, electric vehicle sales rose by 25% to 17 million, pushing annual battery demand past 1 terawatt-hour (TWh)—a historic milestone.

This graphic, using exclusive data from Benchmark Mineral Intelligence (as of February 2025), compares battery capacity by cathode type across major countries. It focuses on the two dominant chemistries: Nickel Cobalt Manganese (NCM) and Lithium Iron Phosphate (LFP).

Understanding Cathode Chemistries

Batteries store and release energy through the movement of lithium ions. The cathode—a key electrode—determines a battery’s cost, range, and thermal performance.

NCM

  • Offers higher energy density and better performance in cold climates, but is more expensive and has a shorter lifespan.

LFP

  • Known for its lower cost and improved thermal stability, though it delivers a shorter driving range and adds weight.

As of now, LFP cathodes make up 40% of the EV market in terms of gigawatt-hours (GWh).

Beyond passenger vehicles, LFP batteries are widely used in systems that undergo frequent charging and discharging—like residential and grid-scale energy storage—where added weight isn’t a major concern. They’re also ideal for daily-use applications such as buses and delivery fleets.

Regional Market Trends

In China, LFP is already dominant, accounting for 64% of the market in 2024. By 2030, that figure is projected to grow to 76%, driven by a focus on affordability in the world’s largest EV market. Notably, over 70% of all EV batteries ever manufactured have been produced in China, contributing to deep manufacturing expertise.

Region/CountryYear% NCM% LFP% Other
China202427%64%8%
North America202471%7%22%
Europe202469%8%24%
South Korea202462%4%35%
Japan202458%0%42%

Outside of China, NCM remains the leading chemistry due to consumer demand for longer range and premium performance.

North America – NCM holds a 71% share in 2024, with a slight decline to 69% forecasted for 2030.

Europe – NCM’s share is expected to grow from 69% in 2024 to 71% by 2030.

South Korea and Japan – Both countries show similar trends, with NCM gaining share as LFP remains limited or absent.

Continue Reading

Electrification

Top 20 Countries by Battery Storage Capacity

China holds about two-thirds of global BESS capacity.

Published

on

This graphic highlights the top 20 battery storage capacity markets by current and planned grid capacity in gigawatt hour (GWh).

Visualizing the Top 20 Countries by Battery Storage Capacity

Over the past three years, the Battery Energy Storage System (BESS) market has been the fastest-growing segment of global battery demand. These systems store electricity using batteries, helping stabilize the grid, store renewable energy, and provide backup power.

In 2024, the market grew by 52%, compared to 25% growth in the EV battery market. Among the top companies in the BESS market are technology giants such as Samsung, LG, BYD, Panasonic, and Tesla.

This graphic highlights the top 20 BESS markets by current and planned grid capacity in gigawatt hour (GWh), based on exclusive data from Rho Motion as of February 2025.

Chinese Dominance

As with the EV market, China currently dominates global BESS deployments, accounting for approximately two-thirds of installed capacity. However, other markets are expected to grow significantly in the coming years, driven by low-cost lithium-ion cells and the expansion of renewable energy capacity.

Currently, China has 215.5 GWh of installed capacity and an ambitious 505.6 GWh project pipeline. The U.S. follows with 82.1 GWh installed and 162.5 GWh planned.

Top BESS MarketsInstalled 2024 (GWh)2027P
🇨🇳 China215.5721.2
🇺🇸 USA82.1244.6
🇬🇧 UK7.556.3
🇦🇺 Australia5.6102.9
🇨🇱 Chile3.841.0
🇮🇹 Italy2.27.9
🇸🇦 Saudi Arabia1.332.4
🇿🇦 South Africa1.39.4
🇮🇪 Ireland1.62.5
🇵🇭 Philippines1.06.1
🇯🇵 Japan1.05.0
🇩🇪 Germany1.06.2
🇰🇷 South Korea1.11.3
🇮🇱 Israel0.84.6
🇫🇷 France0.61.8
🇧🇪 Belgium0.75.3
🇺🇿 Uzbekistan0.65.9
🇸🇪 Sweden0.61.5
🇮🇳 India0.54.3
🇨🇦 Canada0.318.3

Canada is projected to be the fastest-growing market through 2027, with its cumulative capacity hitting 18.3 GWh—a significant increase from its current 0.3 GWh capacity.

Countries such as Australia (97.3 GWh pipeline), Saudi Arabia (31.1 GWh), and Chile (37.2 GWh) have relatively small current installations but plan substantial expansions. Within Europe, the UK leads with 7.5 GWh of installed capacity and 48.7 GWh in the pipeline, while Italy, Germany, France, and Belgium show steady but more modest growth.

Despite being technological leaders, Japan (4 GWh pipeline) and South Korea (0.3 GWh) have relatively low planned BESS expansions.

According to Rho Motion, China will remain the dominant player in 2027, but its share of the total market is expected to decline to just over 50% based on the current project pipeline.

While the BESS market is expanding, challenges remain, including grid connection bottlenecks and the development of revenue streams in emerging markets.

Continue Reading

Subscribe

Popular