Connect with us

Energy Shift

Interactive Map: Crude Oil Pipelines and Refineries of the U.S. and Canada

Published

on

Mapped: Crude Oil Pipelines and Refineries of the U.S. and Canada

Pipelines are the primary method of transporting crude oil around the world, delivering oil and its derivative products swiftly to refineries and empowering reliant businesses.

And North America is a major oil hub. The U.S. and Canada alone are home to more than 90,000 miles of crude oil and petroleum product pipelines, along with more than 140 refineries that can process around 20 million barrels of oil every day.

This interactive graphic uses data from Rextag to map out crude oil pipelines and refineries across the U.S. and Canada, showcasing individual pipeline diameter and daily refinery throughput.

The Longest Crude Oil Pipeline Networks in North America

Since 2010, U.S. crude oil production has more than doubled from 5.4 million barrels a day to more than 11.5 million. Meanwhile, the pipeline networks needed to transport this newly produced oil have only expanded by roughly 56%.

Today, the largest pipeline network across the U.S. and Canada (with a diameter of at least 10 inches) is the 14,919 mile network managed by Plains, which spans from the northwestern tip of Alberta all the way down to the southern coasts of Texas and Louisiana.

CompanyLength of Crude Oil Pipeline Network
Plains Pipeline LP14,919 miles
Enbridge Energy Partners LP12,974 miles
Sunoco Inc. 6,409 miles
MPLX LP5,913 miles
Lotus Midstream5,767 miles

Source: Rextag

Enbridge owns the next largest crude oil pipeline network, with 12,974 miles of crude oil pipelines that are at least 10 inches in diameter. The Canadian company, one of the world’s largest oil companies, transports about 30% of the crude oil produced in North America.

Following the networks of Plains and Enbridge, there’s a steep drop off in the length of pipeline networks, with Sunoco’s crude oil pipeline network spanning about half the length of Enbridge’s at 6,409 miles.

The Largest Crude Oil Refineries in North America

These various sprawling pipeline networks initially carry crude oil to refineries, where it is processed into gasoline, diesel fuel, and other petroleum products.

The refineries with the largest throughput in North America are all located in the Gulf Coast (PADD 3), with the five refineries that process more than 500,000 barrels per day all located in the states of Louisiana and Texas.

CompanyCityRefining Capacity (barrels per day)
Motiva EnterprisesPort Arthur, Texas607,000
Marathon PetroleumGalveston Bay, Texas585,000
Marathon PetroleumGaryville, Louisiana578,000
ExxonMobilBaytown, Texas560,000
ExxonMobilBaton Rouge, Louisiana518,000

Source: Rextag

While Texas and Louisiana have six refineries that process more than 400,000 barrels per day, there are only two other facilities outside of these states with the same kind of throughput, located in Whiting, Indiana (435,000 barrels per day) and Fort McMurray, Alberta (465,000 barrels per day).

Fort McMurray’s facility is an upgrader, which differs from refineries as it upgrades heavy oils like bitumen into lighter synthetic crude oil which flows through pipelines more easily. Many oil refineries aren’t able to directly convert bitumen, which is extracted from oil sands like those found in Alberta, making upgraders a necessary part in the production and processing of crude oil from oil sands.

The Uncertain Future of New Pipelines in North America

The development of new pipelines remains a contentious issue in Canada and the U.S., with the cancellation of the Keystone XL pipeline emblematic of growing anti-pipeline sentiment. In 2021, only 14 petroleum liquids pipeline projects were completed in the U.S., which was the lowest amount of new pipelines and expansions since 2013.

But domestic energy production is once again in the spotlight due to the U.S. ban on Russian oil imports and Russia’s impending export ban on raw materials. North American consumers are now facing surging gasoline and energy prices as foreign oil is proving to be far less reliable in times of geopolitical turmoil.

It’s important to note that pipelines are not a perfect solution, as leaks and spills in just the last decade have resulted in billions of dollars of damages. From 2010 to 2020, the Pipeline and Hazardous Materials Safety Administration recorded 983 incidents that resulted in 149,000 spilled and unrecovered barrels of oil, five fatalities, 27 injuries, and more than $2.5B in damages.

But over the past five years, liquid pipeline incidents have fallen by 21% while pipeline mileage and barrels delivered have increased by more than 27%. Along with these infrastructure improvements, pipeline developers and operators emphasize the lack of better alternatives, as freight and seaborne transportation are both far less efficient and result in more carbon emissions.

Currently, pipelines remain key components of energy consumption across the U.S. and Canada, and as global energy markets face supply squeezes, international sanctions, and geopolitical turbulence, the focus on them has grown.

Click for Comments

Energy Shift

How Many New Mines Are Needed for the Energy Transition?

Copper and lithium will require the highest number of new mines.

Published

on

This graphic estimates the number of mines needed to meet the 2030 demand for energy transition materials.

How Many New Mines Are Needed for the Energy Transition?

The energy transition relies on the minerals necessary to build electric vehicles, batteries, solar farms, and wind turbines. In an economy moving away from fossil fuels every day, sourcing the materials required for this shift presents one of the biggest challenges.
This graphic forecasts the number of mines that must be developed to meet the expected demand for energy transition raw materials and chemicals by 2030. This data comes exclusively from Benchmark Mineral Intelligence as of November 2024.

Nearly 300 Mines

According to Benchmark Mineral Intelligence, meeting global battery demand by 2030 would require 293 new mines or plants.

Mineral2024 Supply (t)2030 Demand (t)Supply Needed (t)No. of Mines/PlantsType
Lithium1,181,0002,728,0001,547,00052Mine
Cobalt272,000401,000129,00026Mine
Nickel3,566,0004,949,0001,383,00028Mine
Natural Graphite1,225,0002,933,0001,708,00031Mine
Synthetic Graphite1,820,0002,176,000356,00012Plant
Manganese90,000409,000319,00021Plant
Purified Phosphoric Acid6,493,0009,001,0002,508,00033Plant
Copper22,912,00026,576,0003,664,00061Mine
Rare Earths83,711116,66332,95229Mine

Copper, used in wires and other applications, and lithium, essential for batteries, will require the most significant number of new mines.

Manganese production would need to increase more than fourfold to meet anticipated demand.

Not an Easy Task

Building new mines is one of the biggest challenges in reaching the expected demand.

After discovery and exploration, mineral projects must go through a lengthy process of research, permitting, and funding before becoming operational.

In the U.S., for instance, developing a new mine can take 29 years.

In contrast, Ghana, the Democratic Republic of Congo, and Laos have some of the shortest development times in the world, at roughly 10 to 15 years.

 

Continue Reading

Energy Shift

Visualizing Europe’s Dependence on Chinese Resources

Europe depends entirely on China for heavy rare earth elements, critical for technologies such as hybrid cars and fiber optics.

Published

on

This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries.

Visualizing Europe’s Dependence on Chinese Resources

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

Despite efforts by European countries to reduce their reliance on China for critical materials, the region remains heavily dependent on Chinese resources.

This graphic shows the percentage of EU raw material supply sourced from China for 12 raw materials used in various industries. Bloomberg published this data in May 2024 based on European Commission research.

China’s Dominance in Clean Energy Minerals

Europe is 100% dependent on China for heavy rare earth elements used in technologies such as hybrid cars, fiber optics, and nuclear power.

Additionally, 97% of the magnesium consumed in Europe, for uses ranging from aerospace alloys to automotive parts, comes from the Asian country.

Raw MaterialPercentage Supplied by ChinaUsage
Heavy rare earth elements100%nuclear reactors, TV screens, fiber optics
Magnesium97%Aerospace alloys, automotive parts
Light rare earth elements85%Catalysts, aircraft engines, magnets
Lithium79%Batteries, pharmaceuticals, ceramics
Gallium71%Semiconductors, LEDs, solar panels
Scandium67%Aerospace components, power generation, sports equipment
Bismuth65%Pharmaceuticals, cosmetics, low-melting alloys
Vanadium62%Steel alloys, aerospace, tools
Baryte45%Oil and gas drilling, paints, plastics
Germanium45%Fiber optics, infrared optics, electronics
Natural graphite40%Batteries, lubricants, refractory materials
Tungsten32%Cutting tools, electronics, heavy metal alloys

Almost 80% of the lithium in electric vehicles and electronics batteries comes from China.

Assessing the Risks

The EU faces a pressing concern over access to essential materials, given the apprehension that China could “weaponize” its dominance of the sector.

One proposed solution is the EU’s Critical Raw Materials Act, which entered into force in May 2024.

The act envisions a quota of 10% of all critical raw materials consumed in the EU to be produced within the EU.

Additionally, it calls for a significant increase in recycling efforts, totaling up to 25% of annual consumption in the EU. Lastly, it sets the target of reducing dependency for any critical raw material on a single non-EU country to less than 65% by 2030.

Continue Reading

Subscribe

Popular