Connect with us

Electrification

Lithium Consumption Has Nearly Quadrupled Since 2010

Published

on

this infographic visualizes how lithium consumption has nearly quadrupled since 2010, primarily driven by batteries

Lithium Consumption Has Nearly Quadrupled Since 2010

Lithium is well-known as one of the key materials behind the lithium-ion batteries that power electronic devices, electric vehicles, and energy storage technologies.

Because of its role in clean energy technologies, lithium demand hasn’t only increased, it has transformed. From primarily being used for ceramics, battery demand has taken over global lithium consumption and driven an almost four-fold increase since 2010.

The Impact of EV Batteries

Between 2000 and 2010, lithium consumption in batteries increased by 20% on average every year. In the following decade, that figure jumped to 107% per year for batteries, with overall lithium consumption growing 27% annually on average.

The full breakdown from the United States Geological Survey (USGS) shows the impact of battery consumption:

End-useLithium Consumption 2010 (%)Lithium Consumption 2021 (%)
Batteries23%74%
Ceramics and glass31%14%
Lubricating greases10%3%
Air treatment5%1%
Continuous casting4%2%
Other27%6%
Total100%100%

Back in 2010, the single largest end-use of lithium was in ceramics and glass manufacturing. Adding lithium carbonate to the coatings on ceramics and glassware reduces their thermal expansion, which is often essential for modern glass-ceramic cooktops.

But over the course of the decade, the EV market grew rapidly, with the global market share of EVs surging from 0.01% in 2010 to 8.6% in 2021. This had a ripple effect on the demand for batteries, which now account for nearly three-fourths of worldwide lithium consumption.

Additionally, the lightweight metal also has other important applications that are less well-known. For instance, lithium-based lubricant greases represent over 70% of global grease production for technical uses. Additionally, it’s also used in die casting, color pigment creation, aluminum smelting, and gas and air treatment.

What’s Next for Lithium Consumption?

With mainstream EV adoption on the horizon, the 2020s could mark another decade of growing lithium consumption.

Multiple countries have pledged to phase out internal combustion engine (ICE) vehicles by 2030, and large automakers like Volkswagen, GM, and Ford plan on rolling out several new EV models.

As EV demand rises, it’s likely that lithium consumption—especially in batteries—will continue increasing, with batteries expected to use 84% of all lithium produced in 2025.

Click for Comments

Electrification

Charted: The Energy Demand of U.S. Data Centers

Data center power needs are projected to triple by 2030.

Published

on

bar chart showing energy demand from data centers

Charted: The Energy Demand of U.S. Data Centers

This was originally posted on our Voronoi app. Download the app for free on iOS or Android and discover incredible data-driven charts from a variety of trusted sources.

As the digital economy accelerates and generative AI becomes more deeply embedded in business and daily life, the physical infrastructure supporting these technologies is undergoing a transformative explosion.

In this graphic, we use data from McKinsey to show current and projected energy demand from data centers in the United States. Data is from October 2023.

U.S. Data Centers Could Quadruple Power Demand by 2030

Today, data centers account for roughly 4% of total U.S. electricity consumption. But by 2030, that share is projected to rise to 12%, driven by unprecedented growth in computing power, storage needs, and AI model training.

In fact, U.S. data center energy demand is set to jump from 224 terawatt-hours in 2025 to 606 terawatt-hours in 2030.

YearConsumption (TWh)% of Total Power Demand
20231474%
20241784%
20252245%
20262927%
20273718%
20284509%
202951310%
203060612%

Meeting this projected demand could require $500 billion in new data center infrastructure, along with a vast expansion of electricity generation, grid capacity, and water-cooling systems. Generative AI alone could require 50–60 GW of additional infrastructure.

This massive investment would also depend on upgrades in permitting, land use, and supply chain logistics. For example, the lead time to power new data centers in large markets such as Northern Virginia can exceed three years. In some cases, lead times for electrical equipment are two years or more.

A Strain on the U.S. Grid

The U.S. has experienced relatively flat power demand since 2007. Models suggest that this stability could be disrupted in the coming years. Data center growth alone could account for 30–40% of all net-new electricity demand through 2030.

Unlike typical power loads, data center demand is constant, dense, and growing exponentially. Facilities often operate 24/7, with little downtime and minimal flexibility to reduce usage.

Learn More on the Voronoi App 

If you enjoyed this infographic, see how Venture Capital Investment in Generative AI has grown, on the Voronoi app.

Continue Reading

Electrification

Visualizing China’s Battery Recycling Dominance

In 2025, China will hold 78% of pre-treatment and 89% of refining capacity.

Published

on

Sankey chart showing China's dominant position in both the pre-treatment and refining stages of battery recycling.

Visualizing China’s Battery Recycling Dominance

Battery recycling is expected to become a cornerstone of the global energy transition as electric vehicles (EVs) and other battery-powered technologies become more widespread.

According to exclusive data from Benchmark Mineral Intelligence, China holds a dominant position in both the pre-treatment and refining stages of battery recycling.

Chinese Growing Dominance

Battery recycling involves two major stages. First is pre-treatment, where recycling begins. Scrap batteries are typically shredded and separated to produce a material known as black mass.

The next stage is refining, which processes black mass into valuable lithium-, nickel-, and cobalt-based chemicals for use in battery cathodes.

China’s scale, infrastructure, and early investments in battery supply chains have translated into an outsized advantage in recycling capacity.

As the largest producer and user of lithium ion batteries, the country is expected to process 3.6 million tonnes of scrap batteries in 2025, up from 1.2 million tonnes in 2022. This would account for 78% of global pre-treatment capacity, with total global capacity projected to exceed 4.6 million tonnes.

Region/Tonnes2022202320242025P
Global1.5M2.4M2.8M4.6M
China1.2M1.8M2.1M3.6M
Asia excl. China158K231K288K361K
Europe118K133K243K416K
North America59K165K129K196K
ROW4K6K6K40K

In second place is the rest of Asia, with 361,000 tonnes, followed by Europe with 416,000 tonnes. While the U.S. attempts to reduce its reliance on China in the mineral sector, North America accounts for just 196,000 tonnes.

The refining stage is even more concentrated.

China’s black mass refining capacity is projected to nearly triple, from 895,000 tonnes in 2022 to 2.5 million tonnes by 2025—representing 89% of global capacity.

Region/Tonnes2022202320242025P
Global960K1.4M1.7M2.8M
China895K1.3M1.5M2.5M
Asia excl. China48K101K146K225K
Europe13K23K25K28K
North America4K5K5K21K
ROW01K1K32K

Refining is critical, as it converts recycled material into high-purity, battery-grade chemicals. The rest of Asia is expected to refine 225,000 tonnes, Europe 28,000 tonnes, and North America only 21,000 tonnes. Between 2022 and 2025, China’s refining capacity is projected to grow by 179%, while North America’s is expected to surge by 425%—albeit from a much smaller base.

As global demand for EVs and battery storage rises, countries looking to build domestic recycling infrastructure must accelerate investment to reduce dependence on Chinese supply chains.

Continue Reading

Subscribe

Popular