Connect with us

Electrification

Lithium Consumption Has Nearly Quadrupled Since 2010

Published

on

this infographic visualizes how lithium consumption has nearly quadrupled since 2010, primarily driven by batteries

Lithium Consumption Has Nearly Quadrupled Since 2010

Lithium is well-known as one of the key materials behind the lithium-ion batteries that power electronic devices, electric vehicles, and energy storage technologies.

Because of its role in clean energy technologies, lithium demand hasn’t only increased, it has transformed. From primarily being used for ceramics, battery demand has taken over global lithium consumption and driven an almost four-fold increase since 2010.

The Impact of EV Batteries

Between 2000 and 2010, lithium consumption in batteries increased by 20% on average every year. In the following decade, that figure jumped to 107% per year for batteries, with overall lithium consumption growing 27% annually on average.

The full breakdown from the United States Geological Survey (USGS) shows the impact of battery consumption:

End-useLithium Consumption 2010 (%)Lithium Consumption 2021 (%)
Batteries23%74%
Ceramics and glass31%14%
Lubricating greases10%3%
Air treatment5%1%
Continuous casting4%2%
Other27%6%
Total100%100%

Back in 2010, the single largest end-use of lithium was in ceramics and glass manufacturing. Adding lithium carbonate to the coatings on ceramics and glassware reduces their thermal expansion, which is often essential for modern glass-ceramic cooktops.

But over the course of the decade, the EV market grew rapidly, with the global market share of EVs surging from 0.01% in 2010 to 8.6% in 2021. This had a ripple effect on the demand for batteries, which now account for nearly three-fourths of worldwide lithium consumption.

Additionally, the lightweight metal also has other important applications that are less well-known. For instance, lithium-based lubricant greases represent over 70% of global grease production for technical uses. Additionally, it’s also used in die casting, color pigment creation, aluminum smelting, and gas and air treatment.

What’s Next for Lithium Consumption?

With mainstream EV adoption on the horizon, the 2020s could mark another decade of growing lithium consumption.

Multiple countries have pledged to phase out internal combustion engine (ICE) vehicles by 2030, and large automakers like Volkswagen, GM, and Ford plan on rolling out several new EV models.

As EV demand rises, it’s likely that lithium consumption—especially in batteries—will continue increasing, with batteries expected to use 84% of all lithium produced in 2025.

Click for Comments

Electrification

White Gold: Mapping U.S. Lithium Mines

In this graphic, Visual Capitalist partnerered with EnergyX to explore the size and location of U.S. lithium mines.

Published

on

Teaser graphic of a map that shows the sizes of the top U.S. lithium mines.

White Gold: Mapping U.S. Lithium Mines

The U.S. doubled imports of lithium-ion batteries for the third consecutive year in 2022, and with EV demand growing yearly, U.S. lithium mines must ramp up production or rely on other nations for their supply of refined lithium.

To determine if the domestic U.S. lithium opportunity can meet demand, we partnered with EnergyX to determine how much lithium sits within U.S. borders.

U.S. Lithium Projects

The most crucial measure of a lithium mine’s potential is the quantity that can be extracted from the source.

For each lithium resource, the potential volume of lithium carbonate equivalent (LCE) was calculated with a ratio of one metric ton of lithium producing 5.32 metric tons of LCE. Cumulatively, existing U.S. lithium projects contain 94.8 million metric tons of LCE.

RankProject NameLCE, million metric tons (est.)
1McDermitt Caldera21.5
2Thacker Pass19.1
3Tonopah Flats18.0
4TLC Lithium10.7
5Clayton Valley (Century Lithium)6.3
6Zeus Lithium6.3
7Rhyolite Ridge3.4
8Arkansas Smackover (Phase 1A)2.8
9Basin Project2.2
10McGee Deposit2.1
11Arkansas Smackover (South West)1.8
12Clayton Valley (Lithium-X, Pure Energy)0.8
13Big Sandy0.3
14Imperial Valley/Salton Sea0.3

U.S. Lithium Opportunities, By State

U.S. lithium projects mainly exist in western states, with comparatively minor opportunities in central or eastern states.

StateLCE, million metric tons (est.)
Nevada88.2
Arkansas4.6
Arizona2.5
California0.3

Currently, the U.S. is sitting on a wealth of lithium that it is underutilizing. For context, in 2022, the U.S. only produced about 5,000 metric tons of LCE and imported a projected 19,000 metric tons of LCE, showing that the demand for the mineral is healthy.

The Next Gold Rush?

U.S. lithium companies have the opportunity to become global leaders in lithium production and accelerate the transition to sustainable energy sources. This is particularly important as the demand for lithium is increasing every year.

EnergyX is on a mission to meet U.S. lithium demands using groundbreaking technology that can extract 300% more lithium from a source than traditional methods.

You can take advantage of this opportunity by investing in EnergyX and joining other significant players like GM in becoming a shareholder.

Continue Reading

Electrification

Will Direct Lithium Extraction Disrupt the $90B Lithium Market?

Visual Capitalist and EnergyX explore how direct lithium extraction could disrupt the $90B lithium industry.

Published

on

Will Direct Lithium Extraction Disrupt the $90B Lithium Market?

Current lithium extraction and refinement methods are outdated, often harmful to the environment, and ultimately inefficient. So much so that by 2030, lithium demand will outstrip supply by a projected 1.42 million metric tons. But there is a solution: Direct lithium extraction (DLE).

For this graphic, we partnered with EnergyX to try to understand how DLE could help meet global lithium demands and change an industry that is critical to the clean energy transition.

The Lithium Problem

Lithium is crucial to many renewable energy technologies because it is this element that allows EV batteries to react. In fact, it’s so important that projections show the lithium industry growing from $22.2B in 2023 to nearly $90B by 2030.

But even with this incredible growth, as you can see from the table, refined lithium production will need to increase 86.5% over and above current projections.

2022 (million metric tons)2030P (million metric tons)
Lithium Carbonate Demand0.461.21
Lithium Hydroxide Demand0.181.54
Lithium Metal Demand00.22
Lithium Mineral Demand0.070.09
Total Demand0.713.06
Total Supply0.751.64

The Solution: Direct Lithium Extraction

DLE is a process that uses a combination of solvent extraction, membranes, or adsorbents to extract and then refine lithium directly from its source. LiTASTM, the proprietary DLE technology developed by EnergyX, can recover an incredible 300% more lithium per ton than existing processes, making it the perfect tool to help meet lithium demands.

Additionally, LiTASTM can refine lithium at the lowest cost per unit volume directly from brine, an essential step in meeting tomorrow’s lithium demand and manufacturing next-generation batteries, while significantly reducing the footprint left by lithium mining.

Hard Rock MiningUnderground ReservoirsDirect Lithium Extraction
Direct CO2 Emissions15,000 kg5,000 kg3.5 kg
Water Use170 m3469 m334-94 m3
Lithium Recovery Rate58%30-40%90%
Land Use464 m23124 m20.14 m2
Process TimeVariable18 months1-2 days

Providing the World with Lithium

DLE promises to disrupt the outdated lithium industry by improving lithium recovery rates and slashing emissions, helping the world meet the energy demands of tomorrow’s electric vehicles.

EnergyX is on a mission to become a worldwide leader in the sustainable energy transition using groundbreaking direct lithium extraction technology. Don’t miss your chance to join companies like GM and invest in EnergyX to transform the future of renewable energy.

Continue Reading

Subscribe

Popular