Energy Shift
How Far Are We From Phasing Out Coal?
How Far Are We from Phasing Out Coal?
At the COP26 conference last year, 40 nations agreed to phase coal out of their energy mixes.
Despite this, in 2021, coal-fired electricity generation reached all-time highs globally, showing that eliminating coal from the energy mix will not be a simple task.
This infographic shows the aggressive phase-out of coal power that would be required in order to reach net zero goals by 2050, based on an analysis by Ember that uses data provided by the International Energy Agency (IEA).
Low-Cost Comes at a High Environmental Cost
Coal-powered electricity generation rose by 9.0% in 2021 to 10,042 Terawatt-hours (TWh), marking the biggest percentage rise since 1985.
The main reason is cost. Coal is the world’s most affordable energy fuel. Unfortunately, low-cost energy comes at a high cost for the environment, with coal being the largest source of energy-related CO2 emissions.
China has the highest coal consumption, making up 54% of the world’s coal electricity generation. The country’s consumption jumped 12% between 2010 and 2020, despite coal making up a lower percentage of the country’s energy mix in relative terms.
Top Consumers | 2020 Consumption (Exajoules) | Share of global consumption |
---|---|---|
China 🇨🇳 | 82.3 | 54.3% |
India 🇮🇳 | 17.5 | 11.6% |
United States 🇺🇸 | 9.2 | 6.1% |
Japan 🇯🇵 | 4.6 | 3.0% |
South Africa 🇿🇦 | 3.5 | 2.3% |
Russia 🇷🇺 | 3.3 | 2.2% |
Indonesia 🇮🇩 | 3.3 | 2.2% |
South Korea 🇰🇷 | 3.0 | 2.0% |
Vietnam 🇻🇳 | 2.1 | 1.4% |
Germany 🇩🇪 | 1.8 | 1.2% |
Together, China and India account for 66% of global coal consumption and emit about 35% of the world’s greenhouse gasses (GHG). If you add the United States to the mix, this goes up to 72% of coal consumption and 49% of GHGs.
How Urgent is to Phase Out Coal?
According to the United Nations, emissions from current and planned fossil energy infrastructure are already more than twice the amount that would push the planet over 1.5°C of global heating, a level that scientists say could bring more intense heat, fire, storms, flooding, and drought than the present 1.2°C.
Apart from being the largest source of CO2 emissions, coal combustion is also a major threat to public health because of the fine particulate matter released into the air.
As just one example of this impact, a recent study from Harvard University estimates air pollution from fossil fuel combustion is responsible for 1 in 5 deaths globally.
The Move to Renewables
Coal-powered electricity generation must fall by 13% every year until 2030 to achieve the Paris Agreement’s goals of keeping global heating to only 1.5 degrees.
To reach the mark, countries would need to speed up the shift from their current carbon-intensive pathways to renewable energy sources like wind and solar.
How fast the transition away from coal will be achieved depends on a complicated balance between carbon emissions cuts and maintaining economic growth, the latter of which is still largely dependent on coal power.
Electrification
Visualizing China’s Cobalt Supply Dominance by 2030
Chinese companies are expected to control 46% of the cobalt supply by 2030.
Visualizing China’s Cobalt Supply Dominance by 2030
Chinese dominance over critical minerals used in technologies like smartphones, electric vehicles (EVs), and solar power has become a growing concern for the U.S. and other Western countries.
Currently, China refines 68% of the world’s nickel, 40% of copper, 59% of lithium, and 73% of cobalt, and is continuing to expand its mining operations.
This graphic visualizes the total cobalt supply from the top 10 producers in 2030, highlighting China’s dominance. The data comes from Benchmark Mineral Intelligence, as of July 2024.
Cobalt production (tonnes) | Non-Chinese Owned Production | Chinese Owned Production | 2030F (Total) | 2030F (Share) |
---|---|---|---|---|
🇨🇩 DRC | 94,989 | 109,159 | 204,148 | 67.9% |
🇮🇩 Indonesia | 23,288 | 25,591 | 48,879 | 16.3% |
🇦🇺 Australia | 7,070 | 0 | 7,070 | 2.4% |
🇵🇭 Philippines | 5,270 | 0 | 5,270 | 1.8% |
🇷🇺 Russia | 4,838 | 0 | 4,838 | 1.6% |
🇨🇦 Canada | 4,510 | 0 | 4,510 | 1.5% |
🇨🇺 Cuba | 4,496 | 0 | 4,496 | 1.5% |
🇵🇬 Papua New Guinea | 541 | 3,067 | 3,608 | 1.2% |
🇹🇷 Turkey | 2,835 | 0 | 2,835 | 0.9% |
🇳🇨 New Caledonia | 2,799 | 0 | 2,799 | 0.9% |
🌍 ROW | 10,336 | 1,901 | 12,237 | 4.1% |
Total | 160,974 | 139,718 | 300,692 | 100.0% |
China’s Footprint in Africa
Cobalt is a critical mineral with a wide range of commercial, industrial, and military applications. It has gained significant attention in recent years due to its use in battery production. Today, the EV sector accounts for 40% of the global cobalt market.
The Democratic Republic of Congo (DRC) currently produces 74% of the world’s cobalt supply. Although cobalt deposits exist in regions like Australia, Europe, and Asia, the DRC holds the largest reserves by far.
China is the world’s leading consumer of cobalt, with nearly 87% of its cobalt consumption dedicated to the lithium-ion battery industry.
Although Chinese companies hold stakes in only three of the top 10 cobalt-producing countries, they control over half of the cobalt production in the DRC and Indonesia, and 85% of the output in Papua New Guinea.
Given the DRC’s large share of global cobalt production, many Chinese companies have expanded their presence in the country, acquiring projects and forming partnerships with the Congolese government.
According to Benchmark, Chinese companies are expected to control 46% of the global cobalt mined supply by 2030, a 3% increase from 2023.
By 2030, the top 10 cobalt-producing countries will account for 96% of the total mined supply, with just two countries—the DRC and Indonesia—contributing 84% of the total.
Energy Shift
Visualizing the Decline of Copper Usage in EVs
Copper content in EVs has steadily decreased over the past decade, even as overall copper demand rises due to the increasing adoption of EVs.
Visualizing the Decline of Copper Usage in EVs
Copper intensity in passenger battery electric vehicles (BEVs) has steadily decreased over the last decade, driven by numerous technological advancements alongside increasing usage of alternative materials such as aluminum.
In this graphic, we visualize the evolution of copper demand in various subcomponents of passenger battery electric vehicles (BEVs) from 2015 to 2030F, along with total global copper demand driven by EVs for the same period. This data comes exclusively from Benchmark Mineral Intelligence.
Copper Intensity Per Car
According to Benchmark Mineral Intelligence, the copper intensity per vehicle is expected to decline by almost 38 kg, from 99 kg in 2015 to 62 kg by 2030.
Year | Wiring | Motor | Copper Foil | Busbar | Auxiliary Motor | Charging Cable | Total |
---|---|---|---|---|---|---|---|
2015 | 30 | 8 | 41.26 | 13.23 | 2.87 | 3.96 | 99.32 |
2016 | 29 | 8 | 38.68 | 13.37 | 2.85 | 3.92 | 95.82 |
2017 | 28 | 7 | 32.67 | 12.72 | 2.84 | 3.90 | 87.13 |
2018 | 27 | 7 | 26.39 | 11.87 | 2.82 | 3.88 | 78.96 |
2019 | 26 | 7 | 28.00 | 10.85 | 2.78 | 3.82 | 78.45 |
2020 | 25 | 7 | 24.71 | 10.24 | 2.73 | 3.76 | 73.44 |
2021 | 24 | 6 | 25.27 | 9.29 | 2.69 | 3.70 | 70.95 |
2022 | 23 | 7 | 28.44 | 8.56 | 2.65 | 3.64 | 73.29 |
2023 | 22 | 7 | 29.87 | 8.12 | 2.61 | 3.58 | 73.18 |
2024F | 21 | 7 | 27.73 | 7.67 | 2.56 | 3.52 | 69.48 |
2025F | 20 | 7 | 27.79 | 7.19 | 2.52 | 2.51 | 67.01 |
2026F | 20 | 7 | 27.78 | 6.63 | 2.48 | 3.41 | 67.30 |
2027F | 19 | 8 | 27.55 | 6.15 | 2.44 | 3.35 | 66.49 |
2028F | 18 | 8 | 26.77 | 5.70 | 2.40 | 3.30 | 64.17 |
2029F | 18 | 8 | 26.17 | 5.51 | 2.39 | 3.28 | 63.35 |
2030F | 17 | 8 | 25.63 | 5.44 | 2.37 | 3.26 | 61.70 |
One of the most significant factors driving this decline is thrifting, where engineers and manufacturers continuously improve the efficiency and performance of various components, leading to reduced copper usage. A key example of this is in battery production, where the thickness of copper foil used in battery anodes has significantly decreased.
In 2015, Benchmark estimated copper foil usage was just over 41 kg per vehicle (at an average thickness of 10 microns), but by 2030, it is projected to fall to 26 kg as manufacturers continue to adopt thinner foils.
Similarly, automotive wiring systems have become more localized, with advances in high-voltage wiring and modular integration allowing for reduced copper content in wiring harnesses.
Copper used in wiring has dropped from 30 kg per vehicle in 2015 to a projected 17 kg by 2030.
Newer, more compact power electronics and improved thermal management in motors and charging cables have also contributed to the reduction in copper usage.
Substitution has also played a role, with alternatives such as aluminum increasingly being used in components like busbars, wiring harnesses, and charging cable applications.
Aluminum’s lighter weight and lower cost have made it a practical alternative to copper in specific applications, though the additional space required to achieve the same level of conductivity can limit its use in certain cases.
Benchmark estimates that copper used in automotive wire harnesses has declined by 30% between 2015 and 2024.
The Road Ahead
Despite reductions in per-vehicle copper usage, the outlook for copper demand from the EV sector remains strong due to the sector’s growth.
Year | EV Sector Copper Demand (tonnes) |
---|---|
2015 | 56K |
2016 | 82K |
2017 | 111K |
2018 | 166K |
2019 | 179K |
2020 | 237K |
2021 | 447K |
2022 | 696K |
2023 | 902K |
2024F | 1.0M |
2025F | 1.2M |
2026F | 1.5M |
2027F | 1.7M |
2028F | 2.0M |
2029F | 2.2M |
2030F | 2.5M |
Benchmark’s analysis indicates that by 2030, copper demand driven by EVs alone will exceed 2.5 million tonnes, securing copper’s critical role in the transition to a low-carbon future.
-
Electrification3 years ago
The Key Minerals in an EV Battery
-
Energy Shift2 years ago
What Are the Five Major Types of Renewable Energy?
-
Electrification2 years ago
The Six Major Types of Lithium-ion Batteries: A Visual Comparison
-
Real Assets2 years ago
Which Countries Have the Lowest Inflation?
-
Misc2 years ago
How Is Aluminum Made?
-
Energy Shift3 years ago
The Solar Power Duck Curve Explained
-
Electrification3 years ago
EVs vs. Gas Vehicles: What Are Cars Made Out Of?
-
Electrification2 years ago
The World’s Top 10 Lithium Mining Companies