Connect with us

Technology Metals

Graphene: The Game-Changing Material of the Future

Published

on

Technology is only as good as the materials it is made from.

Much of the modern information era would not be possible without silicon and Moore’s Law, and electric cars would be much less viable without recent advances in the material science behind lithium-ion batteries.

That’s why graphene, a two-dimensional supermaterial made from carbon, is so exciting. It’s harder than diamonds, 300x stronger than steel, flexible, transparent, and a better conductor than copper (by about 1,000x).

If it lives up to its potential, graphene could revolutionize everything from computers to energy storage.

Graphene: Is It the Next Wonder Material?

The following infographic comes to us from 911Metallurgist, and it breaks down the incredible properties and potential applications of graphene.

Graphene: The Game-Changing Material of the Future

While the properties and applications of graphene are extremely enticing, there has one big traditional challenge with graphene: the cost of getting it.

The Ever-Changing Graphene Price

As you can imagine, synthesizing a material that is one atom thick is a process that has some major limitations. Since a sheet of graphene 1 mm thick (1/32 of an inch) requires three million layers of atoms, graphene has been quite cost-prohibitive to produce in large amounts.

Back in 2013, Nature reported that one micrometer-sized flake of graphene costed more than $1,000, which made graphene one of the most expensive materials on Earth. However, there has been quite some progress in this field since then, as scientists search for the “Holy Grail” in scaling graphene production processes.

By the end of 2015, Deloitte estimated that the market price per gram was close to $100. And today, graphene can now be ordered straight from a supplier like Graphenea, where multiple products are offered online ranging from graphene oxide (water dispersion) to monolayer graphene on silicon wafers.

One producer, NanoXplore, even estimates that graphene is now down to a cost of $0.10 per gram for good quality graphene, though this excludes graphene created through a CVD process (recognized as the highest level of quality available for bulk graphene).

The following graphic from Nature (2014) shows some methods for graphene production – though it should be noted that this is a quickly-changing discipline.

Graphene Production

As the price of graphene trends down at an impressive rate, its applications will continue to grow. However, for graphene to be a true game-changer, it will have to be integrated into the supply chains of manufacturers, which will still take multiple years to accomplish.

Once graphene has “real world” applications, we’ll be able to see what can be made possible on a grander scale.

Subscribe to Visual Capitalist
Click for Comments

Technology Metals

Why Copper Is a Critical Mineral

From the electrical grid to EVs, copper is a key building block for the modern economy.

Published

on

why copper is a critical mineral

Why Copper is a Critical Mineral

Copper is critical for everything from the electrical grid to electric vehicles and renewable energy technologies.

But despite copper’s indispensable role in the modern economy, it is not on the U.S. Critical Minerals list.

This infographic from the Copper Development Association shows what makes copper critical, and why it should be an officially designated Critical Mineral.

Copper’s Role in the Economy

Besides clean energy technologies, several industries including construction, infrastructure, and defense use copper for its unique properties.

For example, copper is used in pipes and water service lines due to its resistance to corrosion and durable nature. As the Biden Administration plans to replace all of America’s lead water pipes, copper pipes are the best long-term solution.

Copper’s high electrical conductivity makes it the material of choice for electric wires and cables. Therefore, it is an important part of energy technologies like wind farms, solar panels, lithium-ion batteries, and the grid. The demand for copper from these technologies is projected to grow over the next decade:

Energy TechnologyAnnual Copper Demand Growth (2021-2035P)Use of Copper
Offshore wind23.3%Undersea cables, generators, transformers
Battery storage21.8%Transformers, wiring
Automotive*14.0%Batteries, motors, charging infrastructure
Solar PV11.9%Wiring, heat exchangers
Onshore wind9.8%Cabling, transformers, substations
Electrical transmission7.2%Transformers, cables, circuit breakers
Electrical distribution2.7%Transformers, cables, circuit breakers

*excludes internal combustion engine (ICE) vehicles.

Furthermore, policies like the Inflation Reduction Act and Bipartisan Infrastructure Law will bolster copper demand through energy and infrastructure investments.

Given its vital role in numerous technologies, why is copper not on the U.S. Critical Minerals list?

Copper and the Critical Minerals List

The USGS defines a Critical Mineral as having three components, and copper meets each one:

  1. It is essential to economic and national security.
  2. It plays a key role in energy technology, defense, consumer electronics, and other applications.
  3. Its supply chain is vulnerable to disruption.

In addition, copper ore grades are falling globally, from an average of 2% in 1900 to 1% in 2000 and a projected 0.5% in 2030, according to BloombergNEF. As grades continue falling, copper mining could become less economical in certain regions, posing a risk to future supply.

The current USGS list of Critical Minerals, which does not include copper, is based on supply risk scores that use data from 2015 to 2018. According to an analysis by the Copper Development Association using the USGS’ methodology, new data shows that copper meets the USGS’ supply risk score cutoff for inclusion on the Critical Minerals list.

Despite not being on the official list, copper is beyond critical. Its inclusion on the official Critical Minerals list will allow for streamlined regulations and faster development of new supply sources.

The Copper Development Association (CDA) brings the value of copper and its alloys to society, to address the challenges of today and tomorrow. Click here to learn more about why copper should be an official critical mineral.

Continue Reading

Electrification

Visualizing 25 Years of Lithium Production, by Country

Lithium production has grown exponentially over the last few decades. Which countries produce the most lithium, and how has this mix evolved?

Published

on

lithium production

Lithium Production by Country (1995-2021)

Lithium is often dubbed as “white gold” for electric vehicles.

The lightweight metal plays a key role in the cathodes of all types of lithium-ion batteries that power EVs. Accordingly, the recent rise in EV adoption has sent lithium production to new highs.

The above infographic charts more than 25 years of lithium production by country from 1995 to 2021, based on data from BP’s Statistical Review of World Energy.

The Largest Lithium Producers Over Time

In the 1990s, the U.S. was the largest producer of lithium, in stark contrast to the present.

In fact, the U.S. accounted for over one-third of global lithium production in 1995. From then onwards until 2010, Chile took over as the biggest producer with a production boom in the Salar de Atacama, one of the world’s richest lithium brine deposits.

Global lithium production surpassed 100,000 tonnes for the first time in 2021, quadrupling from 2010. What’s more, roughly 90% of it came from just three countries.

RankCountry2021 Production (tonnes)% of Total
#1Australia 🇦🇺55,41652%
#2Chile 🇨🇱26,00025%
#3China 🇨🇳14,00013%
#4Argentina 🇦🇷5,9676%
#5Brazil 🇧🇷1,5001%
#6Zimbabwe 🇿🇼1,2001%
#7Portugal 🇵🇹9001%
#8United States 🇺🇸9001%
Rest of World 🌍1020.1%
Total105,984100%

Australia alone produces 52% of the world’s lithium. Unlike Chile, where lithium is extracted from brines, Australian lithium comes from hard-rock mines for the mineral spodumene.

China, the third-largest producer, has a strong foothold in the lithium supply chain. Alongside developing domestic mines, Chinese companies have acquired around $5.6 billion worth of lithium assets in countries like Chile, Canada, and Australia over the last decade. It also hosts 60% of the world’s lithium refining capacity for batteries.

Batteries have been one of the primary drivers of the exponential increase in lithium production. But how much lithium do batteries use, and how much goes into other uses?

What is Lithium Used For?

While lithium is best known for its role in rechargeable batteries—and rightly so—it has many other important uses.

Before EVs and lithium-ion batteries transformed the demand for lithium, the metal’s end-uses looked completely different as compared to today.

End-useLithium Consumption 2010 (%)Lithium Consumption 2021 (%)
Batteries23%74%
Ceramics and glass31%14%
Lubricating greases10%3%
Air treatment5%1%
Continuous casting4%2%
Other27%6%
Total100%100%

In 2010, ceramics and glass accounted for the largest share of lithium consumption at 31%. In ceramics and glassware, lithium carbonate increases strength and reduces thermal expansion, which is often essential for modern glass-ceramic cooktops.

Lithium is also used to make lubricant greases for the transport, steel, and aviation industries, along with other lesser-known uses.

The Future of Lithium Production

As the world produces more batteries and EVs, the demand for lithium is projected to reach 1.5 million tonnes of lithium carbonate equivalent (LCE) by 2025 and over 3 million tonnes by 2030.

For context, the world produced 540,000 tonnes of LCE in 2021. Based on the above demand projections, production needs to triple by 2025 and increase nearly six-fold by 2030.

Although supply has been on an exponential growth trajectory, it can take anywhere from six to more than 15 years for new lithium projects to come online. As a result, the lithium market is projected to be in a deficit for the next few years.

Continue Reading

Subscribe

Popular