Connect with us

Technology Metals

Graphene: The Game-Changing Material of the Future

Published

on

Technology is only as good as the materials it is made from.

Much of the modern information era would not be possible without silicon and Moore’s Law, and electric cars would be much less viable without recent advances in the material science behind lithium-ion batteries.

That’s why graphene, a two-dimensional supermaterial made from carbon, is so exciting. It’s harder than diamonds, 300x stronger than steel, flexible, transparent, and a better conductor than copper (by about 1,000x).

If it lives up to its potential, graphene could revolutionize everything from computers to energy storage.

Graphene: Is It the Next Wonder Material?

The following infographic comes to us from 911Metallurgist, and it breaks down the incredible properties and potential applications of graphene.

Graphene: The Game-Changing Material of the Future

While the properties and applications of graphene are extremely enticing, there has one big traditional challenge with graphene: the cost of getting it.

The Ever-Changing Graphene Price

As you can imagine, synthesizing a material that is one atom thick is a process that has some major limitations. Since a sheet of graphene 1 mm thick (1/32 of an inch) requires three million layers of atoms, graphene has been quite cost-prohibitive to produce in large amounts.

Back in 2013, Nature reported that one micrometer-sized flake of graphene costed more than $1,000, which made graphene one of the most expensive materials on Earth. However, there has been quite some progress in this field since then, as scientists search for the “Holy Grail” in scaling graphene production processes.

By the end of 2015, Deloitte estimated that the market price per gram was close to $100. And today, graphene can now be ordered straight from a supplier like Graphenea, where multiple products are offered online ranging from graphene oxide (water dispersion) to monolayer graphene on silicon wafers.

One producer, NanoXplore, even estimates that graphene is now down to a cost of $0.10 per gram for good quality graphene, though this excludes graphene created through a CVD process (recognized as the highest level of quality available for bulk graphene).

The following graphic from Nature (2014) shows some methods for graphene production – though it should be noted that this is a quickly-changing discipline.

Graphene Production

As the price of graphene trends down at an impressive rate, its applications will continue to grow. However, for graphene to be a true game-changer, it will have to be integrated into the supply chains of manufacturers, which will still take multiple years to accomplish.

Once graphene has “real world” applications, we’ll be able to see what can be made possible on a grander scale.

Support the Future of Data Storytelling

Sorry to interrupt your reading, but we have a favor to ask. At Visual Capitalist we believe in a world where data can be understood by everyone. That’s why we want to build the VC App - the first app of its kind combining verifiable and transparent data with beautiful, memorable visuals. All available for free.

As a small, independent media company we don’t have the expertise in-house or the funds to build an app like this. So we’re asking our community to help us raise funds on Kickstarter.

If you believe in data-driven storytelling, join the movement and back us on Kickstarter!

Thank you.

Support the future of data storytelling, back us on Kickstarter
Click for Comments

Misc

Mapped: U.S. Mineral Production, by State

This infographic breaks down $90.4 billion in non-fuel mineral production by state.

Published

on

mineral production

Mapped: U.S. Non-fuel Mineral Production, by State

Just how many minerals does the U.S. consume? In 2020, non-fuel mineral consumption worked out to around 19,000 pounds or 8.6 tonnes per person.

This includes metals like copper, iron ore, and zinc, along with construction sand, stone, cement, and other industrial minerals. With such high demand, changes in the production of these commodities often reflect how the overall economy is performing.

The above infographic maps U.S. non-fuel mineral production by state in 2021 using data from the United States Geological Survey (USGS).

The Most Valuable Minerals

As the U.S. economy restarted in 2021, American mines generated over $90 billion in non-fuel mineral production, a 12% increase from 2020.

Before diving into the breakdown by state, here’s a look at production value by mineral type:

CategoryProduction value% of Total
Metals$33.8B37.4%
Construction aggregates$29.2B32.3%
Industrial minerals (excl. construction)$27.4B30.3%
Total$90.4B100%

Each of the categories accounted for roughly one-third of the total production value, with metals making up the largest share. Within metals, copper and gold collectively accounted for 66% of the total, followed by iron ore (13%) and zinc (7%).

The production of sand, gravel, and crushed stone—important inputs for construction—also made up a significant chunk of the value, along with other industrial minerals. Furthermore, crushed stone was the leading non-fuel mineral in 2021, with $19.3 billion in production value.

Which States Lead in Mineral Production?

Arizona, Nevada, Texas, California, and Minnesota—the top five states—accounted for nearly 40% of non-fuel mineral production value.

StateValue of Non-fuel Mineral Production% of Total
Arizona$10B11.0%
Nevada$9.4B10.3%
Texas$5.8B6.4%
California$5.3B5.8%
Minnesota$4.0B4.4%
Alaska$3.9B4.3%
Utah$3.8B4.1%
Missouri$3.3B3.7%
Michigan$3.0B3.3%
Wyoming$2.8B3.0%
Florida$2.4B2.7%
Georgia$2.0B2.3%
Montana$2.0B2.2%
Pennsylvania$2.0B2.2%
Alabama$1.9B2.1%
Colorado$1.6B1.8%
New York$1.6B1.7%
Tennessee$1.6B1.7%
Virginia$1.6B1.7%
North Caroline$1.5B1.6%
Ohio$1.4B1.5%
New Mexico$1.3B1.4%
Kansas$1.2B1.3%
Indiana$1.2B1.3%
Arkansas$1.0B1.1%
Wisconsin$1.0B1.1%
Illinois$1.0B1.1%
Iowa$0.96B1.1%
South Carolina$0.95B1.1%
Oklahoma$0.92B1.0%
Washington$0.73B0.8%
Idaho$0.72B0.8%
Louisiana$0.66B0.7%
Oregon$0.60B0.7%
Kentucky$0.59B0.6%
South Dakota$0.50B0.5%
Maryland$0.46B0.5%
New Jersey$0.40B0.4%
West Virginia$0.36B0.4%
Nebraska$0.22B0.2%
Massachusetts$0.21B0.2%
Mississippi$0.20B0.2%
Connecticut$0.18B0.2%
Hawaii$0.13B0.1%
Maine$0.13B0.1%
Vermont$0.11B0.1%
New Hampshire$0.095B0.1%
Rhode Island$0.066B0.07%
North Dakota$0.065B0.07%
Delaware$0.022B0.02%
Undistributed4.0B4.5%
Total$90.4B100.0%

Arizona and Nevada, the top two states, are the country’s biggest producers of copper and gold, respectively. Arizona also produced over $1 billion worth of construction sand and gravel in 2021, in addition to being the country’s leading producer of gemstones.

In third place was Texas, where mines produced nearly $6 billion worth of non-fuel minerals, of which 38% came from crushed stone. California, meanwhile, led in the production of construction sand and gravel, and was the country’s sole source of rare earth elements.

Minnesota also made the top five as the nation’s largest producer of iron ore. In fact, mines in Minnesota and Michigan shipped 98% of domestic usable iron ore products in 2021.

The Missing Critical Minerals

Although the U.S. is a major producer of non-fuel minerals, it still relies on imports for the supply of several minerals.

In 2021, the U.S. imported $5.3 billion worth of raw materials, in addition to $90 billion in net imports of processed mineral materials. Of the 50 minerals deemed critical to national security, the country was 100% net import reliant for 26, including graphite, manganese, and several rare earth metals.

To meet the rising demand for these minerals, U.S. President Biden announced major investments in domestic critical mineral production, including a $35 million grant to MP Materials for the processing of rare earths.

It remains to be seen whether these investments will pay off in building more resilient, end-to-end domestic critical mineral supply chains.

Continue Reading

Technology Metals

The 50 Minerals Critical to U.S. Security

This graphic lists all minerals that are deemed critical to both the economic and national security of the United States.

Published

on

The 50 Minerals Critical to U.S. Security

The U.S. aims to cut its greenhouse gas emissions in half by 2030 as part of its commitment to tackling climate change, but might be lacking the critical minerals needed to achieve its goals.

The American green economy will rely on renewable sources of energy like wind and solar, along with the electrification of transportation. However, local production of the raw materials necessary to produce these technologies, including solar panels, wind turbines, and electric vehicles, is lacking. Understandably, this has raised concerns in Washington.

In this graphic, based on data from the U.S. Geological Survey, we list all of the minerals that the government has deemed critical to both the economic and national security of the United States.

What are Critical Minerals?

A critical mineral is defined as a non-fuel material considered vital for the economic well-being of the world’s major and emerging economies, whose supply may be at risk. This can be due to geological scarcity, geopolitical issues, trade policy, or other factors.

In 2018, the U.S. Department of the Interior released a list of 35 critical minerals. The new list, released in February 2022, contains 15 more commodities.

Much of the increase in the new list is the result of splitting the rare earth elements and platinum group elements into individual entries rather than including them as “mineral groups.” In addition, the 2022 list of critical minerals adds nickel and zinc to the list while removing helium, potash, rhenium, and strontium.

Mineral Example UsesNet Import Reliance
BerylliumAlloying agent in aerospace, defense industries 11%
AluminumPower lines, construction, electronics 13%
ZirconiumHigh-temparature ceramics production 25%
PalladiumCatalytic converters40%
GermaniumFiber optics, night vision applications50%
LithiumRechargeable batteries 50%
MagnesiumAlloys, electronics 50%
NickelStainless steel, rechargeable batteries 50%
TungstenWear-resistant metals50%
BariteHydrocarbon production75%
ChromiumStainless steel75%
TinCoatings, alloys for steel 75%
CobaltRechargeable batteries, superalloys76%
PlatinumCatalytic converters 79%
AntimonyLead-acid batteries, flame retardants 81%
ZincMetallurgy to produce galvanized steel 83%
TitaniumWhite pigment, metal alloys88%
BismuthMedical, atomic research 94%
TelluriumSolar cells, thermoelectric devices95%
VanadiumAlloying agent for iron and steel96%
ArsenicSemi-conductors, lumber preservatives, pesticides 100%
CeriumCatalytic converters, ceramics, glass, metallurgy100%
CesiumResearch, development100%
DysprosiumData storage devices, lasers100%
ErbiumFiber optics, optical amplifiers, lasers100%
EuropiumPhosphors, nuclear control rods 100%
FluorsparManufacture of aluminum, cement, steel, gasoline100%
GadoliniumMedical imaging, steelmaking100%
GalliumIntegrated circuits, LEDs100%
GraphiteLubricants, batteries100%
HolmiumPermanent magnets, nuclear control rods100%
IndiumLiquid crystal display screens 100%
LanthanumCatalysts, ceramics, glass, polishing compounds100%
LutetiumScintillators for medical imaging, cancer therapies 100%
ManganeseSteelmaking, batteries 100%
NeodymiumRubber catalysts, medical, industrial lasers 100%
NiobiumSteel, superalloys100%
PraseodymiumPermanent magnets, batteries, aerospace alloys100%
RubidiumResearch, development in electronics 100%
SamariumCancer treatment, absorber in nuclear reactors 100%
ScandiumAlloys, ceramics, fuel cells100%
TantalumElectronic components, superalloys100%
TerbiumPermanent magnets, fiber optics, lasers100%
ThuliumMetal alloys, lasers 100%
YtterbiumCatalysts, scintillometers, lasers, metallurgy 100%
YttriumCeramic, catalysts, lasers, metallurgy, phosphors 100%
IridiumCoating of anodes for electrochemical processesNo data available
RhodiumCatalytic converters, electrical componentsNo data available
RutheniumElectrical contacts, chip resistors in computersNo data available
HafniumNuclear control rods, alloysNet exporter

The challenge for the U.S. is that the local production of these raw materials is extremely limited.

For instance, in 2021 there was only one operating nickel mine in the country, the Eagle mine in Michigan. The facility ships its concentrates abroad for refining and is scheduled to close in 2025. Likewise, the country only hosted one lithium mine, the Silver Peak Mine in Nevada.

At the same time, most of the country’s supply of critical minerals depends on countries that have historically competed with America.

China’s Dominance in Minerals

Perhaps unsurprisingly, China is the single largest supply source of mineral commodities for the United States.

Cesium, a critical metal used in a wide range of manufacturing, is one example. There are only three pegmatite mines in the world that can produce cesium, and all were controlled by Chinese companies in 2021.

Furthermore, China refines nearly 90% of the world’s rare earths. Despite the name, these elements are abundant on the Earth’s crust and make up the majority of listed critical minerals. They are essential for a variety of products like EVs, advanced ceramics, computers, smartphones, wind turbines, monitors, and fiber optics.

After China, the next largest source of mineral commodities to the United States has been Canada, which provided the United States with 16 different elements in 2021.

The Rising Demand for Critical Minerals

As the world’s clean energy transitions gather pace, demand for critical minerals is expected to grow quickly.

According to the International Energy Association, the rise of low-carbon power generation is projected to triple mineral demand from this sector by 2040.

The shift to a sustainable economy is important, and consequently, securing the critical minerals necessary for it is just as vital.

Continue Reading

Subscribe

Latest News

The latest news from our sponsors:

Popular