Connect with us

Electrification

How EV Adoption Will Impact Oil Consumption (2015-2025P)

Published

on

How much oil is saved by adding electric vehicles into the mix? We look at data from 2015 to 2025P for different types of EVs.

The EV Impact on Oil Consumption

As the world moves towards the electrification of the transportation sector, demand for oil will be replaced by demand for electricity.

To highlight the EV impact on oil consumption, the above infographic shows how much oil has been and will be saved every day between 2015 and 2025 by various types of electric vehicles, according to BloombergNEF.

How Much Oil Do Electric Vehicles Save?

A standard combustion engine passenger vehicle in the U.S. uses about 10 barrels of oil equivalent (BOE) per year. A motorcycle uses 1, a Class 8 truck about 244, and a bus uses more than 276 BOEs per year.

When these vehicles become electrified, the oil their combustion engine counterparts would have used is no longer needed, displacing oil demand with electricity.

Since 2015, two and three-wheeled vehicles, such as mopeds, scooters, and motorcycles, have accounted for most of the oil saved from EVs on a global scale. With a wide adoption in Asia specifically, these vehicles displaced the demand for almost 675,000 barrels of oil per day in 2015. By 2021, this number had quickly grown to 1 million barrels per day.

Let’s take a look at the daily displacement of oil demand by EV segment.

Number of barrels saved per day, 2015Number of barrels saved per day, 2025P
Electric Passenger Vehicles8,600 886,700
Electric Commercial Vehicles0145,000
Electric Buses 43,100333,800
Electric Two & Three-Wheelers674,3001,100,000
Total Oil Barrels Per Day726,0002,465,500

Today, while work is being done in the commercial vehicle segment, very few large trucks on the road are electric—however, this is expected to change by 2025.

Meanwile, electric passenger vehicles have shown the biggest growth in adoption since 2015.

In 2022, the electric car market experienced exponential growth, with sales exceeding 10 million cars. The market is expected to continue its strong growth throughout 2023 and beyond, eventually coming to save a predicted 886,700 barrels of oil per day in 2025.

From Gas to Electric

While the world shifts from fossil fuels to electricity, BloombergNEF predicts that the decline in oil demand does not necessarily equate to a drop in oil prices.

In the event that investments in new supply capacity decrease more rapidly than demand, oil prices could still remain unstable and high.

The shift toward electrification, however, will likely have other implications.

While most of us associate electric vehicles with lower emissions, it’s good to consider that they are only as sustainable as the electricity used to charge them. The shift toward electrification, then, presents an incredible opportunity to meet the growing demand for electricity with clean energy sources, such as wind, solar and nuclear power.

The shift away from fossil fuels in road transport will also require expanded infrastructure. EV charging stations, expanded transmission capacity, and battery storage will likely all be key to supporting the wide-scale transition from gas to electricity.

Click for Comments

Electrification

Charted: Battery Capacity by Country (2024-2030)

This graphic compares battery capacity by cathode type across major countries.

Published

on

This graphic, using exclusive data from Benchmark Mineral Intelligence, compares battery capacity by cathode type across major countries.

Charted: Battery Capacity by Country (2024-2030)

As the global energy transition accelerates, battery demand continues to soar—along with competition between battery chemistries.

According to the International Energy Agency, in 2024, electric vehicle sales rose by 25% to 17 million, pushing annual battery demand past 1 terawatt-hour (TWh)—a historic milestone.

This graphic, using exclusive data from Benchmark Mineral Intelligence (as of February 2025), compares battery capacity by cathode type across major countries. It focuses on the two dominant chemistries: Nickel Cobalt Manganese (NCM) and Lithium Iron Phosphate (LFP).

Understanding Cathode Chemistries

Batteries store and release energy through the movement of lithium ions. The cathode—a key electrode—determines a battery’s cost, range, and thermal performance.

NCM

  • Offers higher energy density and better performance in cold climates, but is more expensive and has a shorter lifespan.

LFP

  • Known for its lower cost and improved thermal stability, though it delivers a shorter driving range and adds weight.

As of now, LFP cathodes make up 40% of the EV market in terms of gigawatt-hours (GWh).

Beyond passenger vehicles, LFP batteries are widely used in systems that undergo frequent charging and discharging—like residential and grid-scale energy storage—where added weight isn’t a major concern. They’re also ideal for daily-use applications such as buses and delivery fleets.

Regional Market Trends

In China, LFP is already dominant, accounting for 64% of the market in 2024. By 2030, that figure is projected to grow to 76%, driven by a focus on affordability in the world’s largest EV market. Notably, over 70% of all EV batteries ever manufactured have been produced in China, contributing to deep manufacturing expertise.

Region/CountryYear% NCM% LFP% Other
China202427%64%8%
North America202471%7%22%
Europe202469%8%24%
South Korea202462%4%35%
Japan202458%0%42%

Outside of China, NCM remains the leading chemistry due to consumer demand for longer range and premium performance.

North America – NCM holds a 71% share in 2024, with a slight decline to 69% forecasted for 2030.

Europe – NCM’s share is expected to grow from 69% in 2024 to 71% by 2030.

South Korea and Japan – Both countries show similar trends, with NCM gaining share as LFP remains limited or absent.

Continue Reading

Electrification

Top 20 Countries by Battery Storage Capacity

China holds about two-thirds of global BESS capacity.

Published

on

This graphic highlights the top 20 battery storage capacity markets by current and planned grid capacity in gigawatt hour (GWh).

Visualizing the Top 20 Countries by Battery Storage Capacity

Over the past three years, the Battery Energy Storage System (BESS) market has been the fastest-growing segment of global battery demand. These systems store electricity using batteries, helping stabilize the grid, store renewable energy, and provide backup power.

In 2024, the market grew by 52%, compared to 25% growth in the EV battery market. Among the top companies in the BESS market are technology giants such as Samsung, LG, BYD, Panasonic, and Tesla.

This graphic highlights the top 20 BESS markets by current and planned grid capacity in gigawatt hour (GWh), based on exclusive data from Rho Motion as of February 2025.

Chinese Dominance

As with the EV market, China currently dominates global BESS deployments, accounting for approximately two-thirds of installed capacity. However, other markets are expected to grow significantly in the coming years, driven by low-cost lithium-ion cells and the expansion of renewable energy capacity.

Currently, China has 215.5 GWh of installed capacity and an ambitious 505.6 GWh project pipeline. The U.S. follows with 82.1 GWh installed and 162.5 GWh planned.

Top BESS MarketsInstalled 2024 (GWh)2027P
🇨🇳 China215.5721.2
🇺🇸 USA82.1244.6
🇬🇧 UK7.556.3
🇦🇺 Australia5.6102.9
🇨🇱 Chile3.841.0
🇮🇹 Italy2.27.9
🇸🇦 Saudi Arabia1.332.4
🇿🇦 South Africa1.39.4
🇮🇪 Ireland1.62.5
🇵🇭 Philippines1.06.1
🇯🇵 Japan1.05.0
🇩🇪 Germany1.06.2
🇰🇷 South Korea1.11.3
🇮🇱 Israel0.84.6
🇫🇷 France0.61.8
🇧🇪 Belgium0.75.3
🇺🇿 Uzbekistan0.65.9
🇸🇪 Sweden0.61.5
🇮🇳 India0.54.3
🇨🇦 Canada0.318.3

Canada is projected to be the fastest-growing market through 2027, with its cumulative capacity hitting 18.3 GWh—a significant increase from its current 0.3 GWh capacity.

Countries such as Australia (97.3 GWh pipeline), Saudi Arabia (31.1 GWh), and Chile (37.2 GWh) have relatively small current installations but plan substantial expansions. Within Europe, the UK leads with 7.5 GWh of installed capacity and 48.7 GWh in the pipeline, while Italy, Germany, France, and Belgium show steady but more modest growth.

Despite being technological leaders, Japan (4 GWh pipeline) and South Korea (0.3 GWh) have relatively low planned BESS expansions.

According to Rho Motion, China will remain the dominant player in 2027, but its share of the total market is expected to decline to just over 50% based on the current project pipeline.

While the BESS market is expanding, challenges remain, including grid connection bottlenecks and the development of revenue streams in emerging markets.

Continue Reading

Subscribe

Popular