Connect with us

Energy Shift

Europe’s Gas Storage Compared to Historical Consumption



Europe's gas storage levels

Europe’s Gas Storage Compared to Historical Consumption

In the wake of the energy crisis, Europe has been rushing to cut ties with Russian gas.

In 2021, Russia accounted for around 45% of the EU’s gas imports. As of August 2022, that figure was around 17%.

However, reducing reliance on Russian gas after years of dependence has put Europe in a precarious situation ahead of winter. To reduce the possibility of an energy crunch in the heating season, the EU bloc set a target to fill 80% of its underground gas storage by November 1.

This infographic puts Europe’s current gas storage levels in perspective by comparing them with annual gas consumption in 2021, based on data from Gas Infrastructure Europe as of November 28, 2022.

Heat For the Winter

As winter approaches, many European countries have near-full gas storage levels, with the overall EU gas storage 94% full. But comparing storage with annual consumption paints a different picture.

CountryTotal Storage Capacity (TWh)% of Storage FilledStorage as a % of Annual Consumption
🇺🇦 Ukraine*32530%38%
🇩🇪 Germany24699%27%
🇮🇹 Italy19392%25%
🇳🇱 Netherlands13989%35%
🇫🇷 France13498%30%
🇦🇹 Austria9695%100%
🇭🇺 Hungary6883%52%
🇨🇿 Czech Republic4496%46%
🇸🇰 Slovakia3991%67%
🇵🇱 Poland3698%15%
🇪🇸 Spain3597%10%
🇷🇴 Romania3394%27%
🇱🇻 Latvia2459%122%
🇩🇰 Denmark1098%42%
🇬🇧 UK*10100%1%
🇧🇪 Belgium8100%5%
🇧🇬 Bulgaria693%16%
🇭🇷 Croatia595%16%
🇵🇹 Portugal498%7%
🇸🇪 Sweden0.193%1%
EU 🇪🇺111994%28%

*Ukraine and UK are non-EU countries. Nine EU countries that are not on the list do not have any gas storage sites.

Ukraine has the largest storage capacity, and while it’s only 30% full, it represents nearly 40% of the country’s annual gas consumption. However, Russia’s continuing attacks on Ukraine’s energy infrastructure may squeeze supplies as temperatures drop.

The Nations at Risk of Running Low on Gas

Germany, Europe’s biggest economy and largest importer of Russian gas, has almost completely filled its gas storage. Despite this, storage supplies only amount to 27% of annual German gas consumption. Given that half of all German households use natural gas for heating, these stocks are especially important as winter peaks.

While storage facilities in countries like Poland, Spain, and Belgium are over 90% full, they represent only a fraction of annual gas consumption at 15%, 10%, and 5% respectively. Meanwhile, countries like Austria and Latvia have stored more gas than they consume in an entire year.

The UK’s gas storage is full but makes up just 1% of its annual consumption. The majority of UK homes rely on gas for heating, and it also accounts for 30% of electricity generation. A gas crunch could lead to both higher heating and electricity prices for UK residents.

What’s Next for Europe’s Gas Crisis?

This year, warmer-than-normal temperatures and efforts to reduce gas consumption have both played important roles in controlling Europe’s energy crisis before winter sets in.

However, the region’s reliance on Russia was decades in the making, and replacing it won’t be easy. EU countries’ gas storage sites are likely to be depleted by the spring of 2023. Without pipeline gas from Russia, Europe will have limited import capacity, and filling gas storage sites for next winter could be challenging.

Europe is undertaking a number of initiatives to combat the crisis. Countries in the region (including the UK) have pledged over $700 billion to reduce energy costs for households and to meet the liquidity needs of power companies. This, along with lower consumer demand due to high gas prices, will help lessen the impacts of the crisis in the short term.

However, looking ahead to 2023 and 2024, if gas prices remain high, industrial production is likely to fall as producers cut costs. Combined with low consumer confidence and high inflation, a fall in industrial output will likely exacerbate a potential recession, should things unfold that way.

Click for Comments

Energy Shift

Visualizing the Scale of Global Fossil Fuel Production

How much oil, coal, and natural gas do we extract each year? See the scale of annual fossil fuel production in perspective.



fossil fuel production

The Scale of Global Fossil Fuel Production

Fossil fuels have been our predominant source of energy for over a century, and the world still extracts and consumes a colossal amount of coal, oil, and gas every year.

This infographic visualizes the volume of global fossil fuel production in 2021 using data from BP’s Statistical Review of World Energy.

The Facts on Fossil Fuels

In 2021, the world produced around 8 billion tonnes of coal, 4 billion tonnes of oil, and over 4 trillion cubic meters of natural gas.

Most of the coal is used to generate electricity for our homes and offices and has a key role in steel production. Similarly, natural gas is a large source of electricity and heat for industries and buildings. Oil is primarily used by the transportation sector, in addition to petrochemical manufacturing, heating, and other end uses.

Here’s a full breakdown of coal, oil, and gas production by country in 2021.

Coal Production

If all the coal produced in 2021 were arranged in a cube, it would measure 2,141 meters (2.1km) on each side—more than 2.5 times the height of the world’s tallest building.

China produced 50% or more than four billion tonnes of the world’s coal in 2021. It’s also the largest consumer of coal, accounting for 54% of coal consumption in 2021.

Rank Country2021 Coal Production
(million tonnes)
% of Total
#1🇨🇳 China 4,126.050%
#2🇮🇳 India 811.310%
#3🇮🇩 Indonesia 614.08%
#4🇺🇸 U.S. 524.46%
#5🇦🇺 Australia 478.66%
#6🇷🇺 Russia 433.75%
#7🇿🇦 South Africa 234.53%
#8🇩🇪 Germany 126.02%
#9🇰🇿 Kazakhstan 115.71%
#10🇵🇱 Poland 107.61%
🌍 Other 600.97%

India is both the second largest producer and consumer of coal. Meanwhile, Indonesia is the world’s largest coal exporter, followed by Australia.

In the West, U.S. coal production was down 47% as compared to 2011 levels, and the descent is likely to continue with the clean energy transition.

Oil Production

In 2021, the United States, Russia, and Saudi Arabia were the three largest crude oil producers, respectively.

Rank Country2021 Oil Production
(million tonnes)
% of Total
#1🇺🇸 U.S. 711.117%
#2🇷🇺 Russia 536.413%
#3🇸🇦 Saudi Arabia 515.012%
#4🇨🇦 Canada 267.16%
#5🇮🇶 Iraq 200.85%
#6🇨🇳 China 198.95%
#7🇮🇷 Iran 167.74%
#8🇦🇪 UAE 164.44%
#9 🇧🇷 Brazil156.84%
#10🇰🇼 Kuwait 131.13%
🌍 Other 1172.028%

OPEC countries, including Saudi Arabia, made up the largest share of production at 35% or 1.5 billion tonnes of oil.

U.S. oil production has seen significant growth since 2010. In 2021, the U.S. extracted 711 million tonnes of oil, more than double the 333 million tonnes produced in 2010.

Natural Gas Production

The world produced 4,036 billion cubic meters of natural gas in 2021. The above graphic converts that into an equivalent of seven billion cubic meters of liquefied natural gas (LNG) to visualize it on the same scale as oil and gas.

Here are the top 10 producers of natural gas in 2021:

Rank Country2021 Natural Gas Production
(billion m3)
% of Total
#1🇺🇸 U.S. 934.223%
#2🇷🇺 Russia 701.717%
#3🇮🇷 Iran 256.76%
#4🇨🇳 China 209.25%
#5🇶🇦 Qatar 177.04%
#6🇨🇦 Canada 172.34%
#7🇦🇺 Australia 147.24%
#8🇸🇦 Saudi Arabia 117.33%
#9🇳🇴 Norway 114.33%
#10🇩🇿 Algeria 100.82%
🌍 Other 1106.327%

The U.S. was the largest producer, with Texas and Pennsylvania accounting for 47% of its gas production. The U.S. electric power and industrial sectors account for around one-third of domestic natural gas consumption.

Russia, the next-largest producer, was the biggest exporter of gas in 2021. It exported an estimated 210 billion cubic meters of natural gas via pipelines to Europe and China. Around 80% of Russian natural gas comes from operations in the Arctic region.

Continue Reading

Energy Shift

Mapped: Biggest Sources of Electricity by State and Province

The U.S. and Canada rely on a different makeup of sources to generate their electricity. How does each state and province make theirs?



Mapped: Biggest Sources of Electricity by State and Province

On a national scale, the United States and Canada rely on a very different makeup of sources to generate their electricity.

The U.S. primarily uses natural gas, coal, and nuclear power, while Canada relies on both hydro and nuclear. That said, when zooming in on the province or state level, individual primary electricity sources can differ greatly.

Here’s a look at the electricity generation in the states and provinces of these two countries using data from the Nuclear Energy Institute (2021) and the Canada Energy Regulator (2019).

Natural Gas

Natural gas is widely used for electricity generation in the United States. Known as a “cleaner” fossil fuel, its abundance, coupled with an established national distribution network and relatively low cost, makes it the leading electricity source in the country.

In 2021, 38% of the 4120 terawatt-hours (TWh) of electricity generated in the U.S. came from natural gas. Not surprisingly, more than 40% of American states have natural gas as their biggest electricity source.

Here are some states that have the largest shares of natural gas-sourced electricity.

State/Province% of Electricity from Natural Gas
🇺🇸 Rhode Island90.9
🇺🇸 Delaware85.8
🇺🇸 Massachusetts76.9
🇺🇸 Florida73.9
🇺🇸 Mississippi72.1

In Canada, natural gas is only the third-biggest electricity source (behind hydro and nuclear), accounting for 11% of the 632 TWh of electricity produced in 2019. Alberta is the only province with natural gas as its main source of electricity.


Nuclear power is a carbon-free energy source that makes up a considerable share of the energy generated in both the U.S. and Canada.

19% of America’s and 15% of Canada’s electricity comes from nuclear power. While the percentages are close to one another, it’s good to note that the United States generates 6 to 7 times more electricity than Canada each year, yielding a lot more nuclear power than Canada in terms of gigawatt hours (GWh) per year.

As seen in the map, many states and provinces with nuclear as their main source of electricity are concentrated in the eastern half of the two countries.

In the U.S., Illinois, Pennsylvania, and South Carolina are top producers in terms of GWh/year. Illinois and South Carolina also have nuclear as their primary electricity source, whereas Pennsylvania’s electricity production from natural gas exceeds that from nuclear.

The vast majority of Canada’s nuclear reactors (18 of 19) are in Ontario, with the 19th in New Brunswick. Both of these provinces rely on nuclear as their biggest source of electricity.

Renewables: Hydro, Wind and Solar

Out of the different types of renewable electricity sources, hydro is the most prevalent in North America. For example, 60% of Canada’s and 6% of the U.S.’s electricity comes from hydropower.

Here are the states and provinces that have hydro as their biggest source of electricity.

State/Province% of Electricity from Hydro
🇨🇦 Manitoba 97
🇨🇦 Newfoundland and Labrador95
🇨🇦 Quebec94
🇨🇦 British Columbia87
🇨🇦 Yukon80
🇺🇸 Washington65
🇺🇸 Idaho51
🇺🇸 Vermont50
🇨🇦 Northwest Territories 47
🇺🇸 Oregon46

Wind and solar power collectively comprise a small percentage of total electricity generated in both countries. While no state or province relies on solar as its biggest source of electricity, Iowa, Kansas, Oklahoma, and South Dakota rely primarily on wind for their electricity, along with Canada’s Prince Edward Island (PEI).

Coal and Oil

Coal and oil are emission-heavy electricity sources still prevalent in North America.

Currently, 22% of America’s and 7% of Canada’s electricity comes from coal, with places such as Kentucky, Missouri, West Virginia, Saskatchewan, and Nova Scotia still relying on coal as their biggest sources of electricity.

Certain regions also use petroleum to generate their electricity. Although its use for this purpose is declining, it is still the biggest source of electricity in both Hawaii and Nunavut.

Over the next few years, it will be interesting to observe the use of these fossil fuels for electricity generation in the U.S. and Canada. Despite the differences in climate commitments between the two countries, lowering coal and oil-related emissions may be a critical part of hitting decarbonization targets in a timely manner.

Continue Reading