Connect with us

Technology Metals

Visualizing the Critical Metals in a Smartphone

Published

on

A Breakdown of the Critical Metals in a Smartphone

A Breakdown of the Critical Metals in a Smartphone

Visualizing the Critical Metals in a Smartphone

In an increasingly connected world, smartphones have become an inseparable part of our lives.

Over 60% of the world’s population owns a mobile phone and smartphone adoption continues to rise in developing countries around the world.

While each brand has its own mix of components, whether it’s a Samsung or an iPhone, most smartphones can carry roughly 80% of the stable elements on the periodic table.

But some of the vital metals to build these devices are considered at risk due to geological scarcity, geopolitical issues, and other factors.

Smartphone PartCritical Metal
Touch Screen indium
Displaylanthanum; gadolinium; praseodymium; europium; terbium; dysprosium
Electronicsnickel, gallium, tantalum
Casingnickel, magnesium
Battery lithium, nickel, cobalt
Microphone, speakers, vibration unit nickel, praseodymium, neodymium, gadolinium, terbium, dysprosium

What’s in Your Pocket?

This infographic based on data from the University of Birmingham details all the critical metals that you carry in your pocket with your smartphone.

1. Touch Screen

Screens are made up of multiple layers of glass and plastic, coated with a conductor material called indium which is highly conductive and transparent.

Indium responds when contacted by another electrical conductor, like our fingers.

When we touch the screen, an electric circuit is completed where the finger makes contact with the screen, changing the electrical charge at this location. The device registers this electrical charge as a “touch event”, then prompting a response.

2. Display

Smartphones screens display images on a liquid crystal display (LCD). Just like in most TVs and computer monitors, a phone LCD uses an electrical current to adjust the color of each pixel.

Several rare earth elements are used to produce the colors on screen.

3. Electronics

Smartphones employ multiple antenna systems, such as Bluetooth, GPS, and WiFi.

The distance between these antenna systems is usually small making it extremely difficult to achieve flawless performance. Capacitors made of the rare, hard, blue-gray metal tantalum are used for filtering and frequency tuning.

Nickel is also used in capacitors and in mobile phone electrical connections. Another silvery metal, gallium, is used in semiconductors.

4. Microphone, Speakers, Vibration Unit

Nickel is used in the microphone diaphragm (that vibrates in response to sound waves).

Alloys containing rare earths neodymium, praseodymium and gadolinium are used in the magnets contained in the speaker and microphone. Neodymium, terbium and dysprosium are also used in the vibration unit.

5. Casing

There are many materials used to make phone cases, such as plastic, aluminum, carbon fiber, and even gold. Commonly, the cases have nickel to reduce electromagnetic interference (EMI) and magnesium alloys for EMI shielding.

6. Battery

Unless you bought your smartphone a decade ago, your device most likely carries a lithium-ion battery, which is charged and discharged by lithium ions moving between the negative (anode) and positive (cathode) electrodes.

What’s Next?

Smartphones will naturally evolve as consumers look for ever-more useful features. Foldable phones, 5G technology with higher download speeds, and extra cameras are just a few of the changes expected.

As technology continues to improve, so will the demand for the metals necessary for the next generation of smartphones.

Subscribe to Visual Capitalist

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.
Continue Reading
Comments

Electrification

The Biggest Mining Companies in the World in 2021

The graphic takes a look at the world’s largest mining companies by market capitalization and the metals they produce.

Published

on

The Biggest Mining Companies in the World in 2021

Ranked: The Top 20 Mining Companies

Mining companies have emerged from the COVID-19 pandemic in excellent financial and operational shape and the forecast is even brighter as the economy recovers.

The market is expected to reach a value of nearly $1.86 trillion by 2022, with the increasing demand for minerals for power generation and renewables technology.

In the graphic above, we show the world’s top companies by market capitalization as of June 22, 2021, and the metals they mine.

The Bottom Line: From Smartphones to Food

From roads, hospitals, automobiles, houses, computers, satellites, and even fertilizer for crops, mining provides many of the materials we interact with every day. Copper, iron, rare earth metals, aluminum, and phosphate are just a handful of the mined materials that make modern life and feed the bottom line for mining companies.

The two biggest by market capitalization, BHP ($179B) and Rio Tinto ($132B), both produce a range of commodities, mainly iron ore and copper. The next on the list is also the biggest company in Brazil, Vale ($112B). The miner is the world’s largest producer of iron ore and pellets (small balls of iron ore) used to manufacture steel.

CompanyMarket Cap (USD)Country Main Mining Activity
BHP$179B🇦🇺 Australia iron ore, copper, coal
Rio Tinto$132B🇦🇺 Australia iron ore, aluminum, copper
Vale$112B🇧🇷 Braziliron ore, nickel
Glencore$55B🇨🇭 Switzerlandcopper, cobalt, zinc, nickel
Norilsk Nickel$54B🇷🇺 Russiapalladium, nickel
Freeport-McMoRan$52B🇺🇸 United Statescopper
Anglo American$52B🇬🇧 United Kingdomdiamonds, copper, platinum, iron ore, coal
Fortescue Metals$51B🇦🇺 Australia iron ore
Newmont Goldcorp$50B🇺🇸 United Statesgold
Southern Copper$47B🇺🇸 United Statescopper
Zijin Mining Group$38B🇨🇳 Chinagold, copper
Barrick Gold$37B🇨🇦 Canadagold
Nutrien$34B🇨🇦 Canadapotash
Anglo American Platinum$28B🇿🇦 South Africaplatinum, palladium, rhodium
Franco-Nevada$28B🇨🇦 Canadagold
Polyus $27B🇷🇺 Russiagold
Ganfeng Lithium$24B🇨🇳 Chinalithium
Wheaton Precious Metals$20B🇨🇦 Canadagold, silver, palladium, cobalt
Antofagasta $19B🇬🇧 United Kingdomcopper
Ma’aden$18B🇸🇦 Saudi Arabiagold

A $57 billion gap separates the top 3 from the rest of the group. In fourth place comes Glencore ($55B) with its mixed operations of trading and mining metals, agricultural products, and oil and gas.

The automotive industry is a big consumer of metals, which explains Norilsk Nickel’s ($54B) fifth place. The company, owned by the wealthiest man in Russia, is the world’s biggest producer of palladium, used in vehicles’ catalytic converters.

Miners also serve the luxury market, with precious metals like gold, silver, and gemstones. Number six on the list, Anglo American ($52B) is one of the world’s leading diamond companies.

In terms of countries, Canada leads the ranking with 4 miners on the list. The United States and Australia come next with 3 companies each.

Charging and Changing the Future of Mining Companies

The United States, Europe, and Asia are making big investments in electrification and power generation. By 2024, almost 33% of the world’s electricity is forecast to come from renewables.

This shift from fossil fuels will require a lot of copper, cobalt, and lithium for batteries. Mining companies are in a position to capitalize as the market expands.

For example, no. 17 in the list, China’s Ganfeng Lithium, the world’s third-largest producer of lithium chemicals for batteries, saw its market capitalization grow more than 25% in 2021.

The energy transition is just beginning, and the materials used in building a more sustainable future will also build up the largest mining companies of tomorrow.

Continue Reading

Electrification

Visualized: The Silver Mining Journey From Ore to More

This graphic illustrates the silver mining journey and explores the reasons why it is an essential metal in the green energy transformation.

Published

on

how silver is mined

The Silver Mining Journey From Ore to More

Silver has been a monetary metal and used in jewelry for thousands of years, but today, silver is powering the green energy transition and new tech innovation. With the greatest electrical conductivity of all metals, silver is used in electrical contacts and circuit boards, along with solar panels, electric vehicles, and 5G devices.

Behind the large collection of silver-dependent products and technologies is an active mining industry that must supply the necessary metal. So how exactly is the silver mined and produced?

This graphic from our sponsor Silver X walks us through how we mine and refine silver along with the growing demand for the metal which will fuel the economy of the future.

Getting Silver Out of the Ground

Like many other metals, silver is found in the Earth’s crust and primarily mined using heavy machinery and explosives.

Once a silver bearing ore body has been identified and can be mined at a reasonable cost, the mining method is chosen depending on the nature of the ore body along with other factors like location and infrastructure:

  • Open pit mining: Best for mining large amounts of lower grade silver ore near the surface
  • Underground shaft mining: Best for following and mining high-grade veins of silver ore further underground

While in open pit mining a huge volume of land is displaced across a large surface area, it is typically safer overall compared to underground mines.

Despite their differences, both methods ultimately use explosives to break up chunks of ore into easily transportable pieces that are then brought to crushing facilities for the next step.

Crushing and Separating Mined Silver Ore

Once the ore has been mined and transported out of the mine, it goes through a variety of crushers which break down the ore into small chunks. The chunks of silver ore are crushed and ground into a fine powder, allowing for the separation process to begin.

There are two primary methods of silver separation, and both involve mixing the silver ore powder with water to form a slurry.

In the flotation process of separation, chemicals are added to the slurry to make any silver and lead water repellent. Air bubbles are then blown through the slurry, with the silver and lead sticking to the bubbles and rising to the top of the slurry where they are separated and dried out.

In the tank leaching and Merill-Crowe process, cyanide is added to the slurry to ensure the silver dissolves into the solution. Then, solids are filtered out in a settling tank, with the silver solution deaerated before zinc powder is added. The solution then passes through a set of filter plates and presses which collect the zinc and silver precipitate which is dried off.

Processing and Refining to Pure Silver

Once the silver ore has been largely broken down and separated from much of the waste rock, the silver must be completely extracted from the remaining metals. Typically, two different processes are used depending on the other metal that must be separated from.

  • Electrolytic Refining (Copper): This method places the copper-silver concentrate in an electrolytic cell within an electrolyte solution. Electricity is passed through the solution, resulting in the copper and silver separating out to opposite ends of the cell. The process is repeated until only silver remains, which is then collected and smelted to remove any remaining impurities.
  • Parkes Process (Lead): This method adds zinc to the molten lead-silver solution, since silver is attracted to zinc while lead is repelled. The silver and zinc compound floats to the top and is skimmed off before being heated and distilled until only pure silver remains.

Silver’s Growing Industry and Investment Demand

In 2020, 784.4 million ounces of silver were mined across the world according to Metals Focus. While production is forecasted to increase by ~8% to reach 848.5 million ounces in 2021, it’s still greatly outpaced by growing demand for silver.

Silver demand is forecasted to see a 15% YoY increase from 2020’s 896.1 million ounces to 1,033 million ounces forecasted for 2021. Solar panels have been one of the largest industrial drivers for silver demand, with demand more than doubling since 2014, from 48.4 million ounces to 105 million ounces forecasted for 2021.

YearSilver Production (in million ounces)YoY % ChangeTotal Silver Demand (in million ounces)YoY % Change
2017862.9-4.1%966.0-3.1%
2018848.4-1.7%989.82.5%
2019833.2-1.8%995.40.6%
2020784.4-5.9%896.1-9.9%
2021F848.58.2%1,033.015.3%

Investment has also been a key demand driver for silver, especially since Reddit’s WallStreetBets crowd began pursuing the possibility of a silver short squeeze. Net physical investment demand rose 29.4% from 2017’s 156.2 million ounces to 200.5 million ounces in 2020, and 2021 is forecasted to see a 26.1% increase with a net investment demand of 252.8 million ounces.

Whether driven by investors or industries, silver is in high demand as the world shifts to newer and greener technologies. The process of silver mining, extraction, and refining will continue to play a pivotal role in supplying the world with the silver it needs.

Continue Reading

Subscribe

Receive updates when new visuals go live:

Thank you!
Given email address is already subscribed, thank you!
Please provide a valid email address.
Please complete the CAPTCHA.
Oops. Something went wrong. Please try again later.

Latest News

The latest news from our sponsors:

Popular